乐于分享
好东西不私藏

空间计量软件代码资源集锦(Matlab/R/Python/SAS/Stata), 不再因空间效应而感到孤独

本文最后更新于2026-01-02,某些文章具有时效性,若有错误或已失效,请在下方留言或联系老夜

空间计量软件代码资源集锦(Matlab/R/Python/SAS/Stata), 不再因空间效应而感到孤独

凡是搞计量经济的,都关注这个号了

箱:econometrics666@sina.cn

所有计量经济圈方法论丛的do文件, 微观数据库和各种软件都放在社群里.建议到空间计量研究小组交流访问.计量经济圈空间计量研究小组@陈鑫—同济大学在读博士.

空间计量研究小组推荐

1.空间计量百科全书式的使用指南

2.空间计量经济学最新进展和理论框架

3.空间计量模型选择、估计、权重、检验

4.空间和时间的计量,关注二位国人

咱们空间计量研究小组已经聚集了一大批空间计量专业学者。今天,将给圈友们分享一些空间计量软件代码资源集锦,通过这些资源能够对空间计量有一个整体的把握。如果对空间计量感兴趣且有一些专业基础知识,欢迎到空间计量研究小组交流访问(文后“阅读原文”)。

空间计量百科全书式的使用指南百科指南

空间计量百科全书式的使用指南的do file公开

空间计量的46页Notes, 区经相关学者可参阅

1)Matalb 代码资源:
Elhorst J.P.: 

https://spatial-panels.com/software/
James P. LeSage:

https://www.spatial-econometrics.com/
Donald J. Lacombe:

http://myweb.ttu.edu/dolacomb/matlab.html

2)R代码资源:
CRAN Task View:

https://cran.r-project.org/web/views/Spatial.html

3)Python代码资源:
PySAL: 

https://pysal.readthedocs.io/en/latest/users/tutorials/index.html

4)Stata代码资源:具体操作详见计量经济圈里的《空间计量的46页Notes, 区经相关学者可参阅》:

创建空间权重矩阵

l  spmat –Create and manage spatial-weighting matrix objects  [Author: Drukker et.al,2013]

l  spatwmat—Spatial weights matrices for spatial data analysis  [Author: Pisati ,2012]

l  spwmatrix— Generates, imports, and exports spatial weights  [Author: Jeanty, updated 2014.03.15]

l  spwmatfill —Assigns first nearest neighbors to observations with no contiguous neighbors.   [Author: Jeanty, 2010]

l  spweight — Module to compute Cross-Section and Panel SpatialWeight Matrix  [Author: Shehata, 2013]

l  spweightxt– Module to compute Cross-Section and Panel Spatial Weight Matrix  [Author: Shehata,2013]

l  spweightcs —Module to computeCross Section Spatial Weight Matrix  [Author: Shehata, 2013]

l  spcs2xt—Module to Convert Cross Section to Panel Spatial Weight Matrix  [Author: Shehata, 2012]

l  shp2dta —Module to converts shape boundary files to Stata datasets  [Author: Crow, 2013]

空间自相关检验

l  spautoc –Stata modules to calculate spatial autocorrelation  [Author: Nicholas Cox et.al,2006]

l  spatgsa –Measures of global spatial autocorrelation [Author: Maurizio Pisati, 2001]

l  spatlsa –Measures of local spatial autocorrelation [Author: Maurizio Pisati, 2001]

l  spatcorr –Stata modules to compute and plot spatial autocorrelation  [Author: Maurizio Pisati, 2001]

l  spatdiag –Diagnostic tests for spatial dependence in OLS regression  [Author: Maurizio Pisati, 2001]

l  anketest–Moduleto perform diagnostic tests for spatial autocorrelation in the residuals ofOLS, SAR, IV, and IV-SAR models

l  splagvar-Moduleto generate spatially lagged variables, construct the Moran Scatter plot, andcalculate Moran’s I statistics

空间截面回归

l  spatreg- Moduleto estimate the spatial lag and the spatial error regression models by maximumlikelihood.

l  spmlreg–Moduleto estimate the spatial lag, the spatial error, the spatial durbin, and thegeneral spatial models by maximum likelihood

l  spautoreg–Moduleto estimate Spatial Cross Sections Regression (Lag-Error-Durbin-SAC-SPGKS-SPGSAR-GS2SLS-GS3SLS-SPML-SPGS-SPIVREG-IVTobit)

l  sppack–Modulefor cross-section spatial-autoregressive models

l  gs2sls-Moduleto estimate Generalized Spatial Two Stage Least Squares Cross Sections Regression

l  gs2slsar–Module to estimate GeneralizedSpatial Autoregressive Two Stage Least Squares Cross Sections Regression

l  gs3sls–Moduleto estimate Generalized Spatial Three Stage Least Squares Cross SectionsRegression (3SLS)

l  gs3slsar–Module to estimate GeneralizedSpatial Autoregressive Three Stage Least Squares (3SLS) Cross SectionsRegression

l  spgmm–Moduleto estimate Spatial Autoregressive Generalized Method of Moments Cross SectionsRegression

l  spregsac–Module to estimate Maximum Likelihood Estimation AutoCorrelation (SAC) CrossSection Regression

l  spregsar–Moduleto estimate Maximum Likelihood Estimation Spatial Lag Cross Sections Regression

l  spregsdm–Moduleto Estimate Maximum Likelihood Estimation Spatial Durbin Cross SectionsRegression

l  spregsem–Module to Estimate Maximum LikelihoodEstimation Spatial Error Cross Sections Regression

l  spmstard–Moduleto Eestimate Multiparametric Spatio Temporal AutoRegressive Regression SpatialDurbin Cross Sections Models

l  spmstar–Moduleto Estimate (m-STAR) Spatial Multiparametric Spatio Temporal AutoRegressiveRegression Models

l  spmstardh–Moduleto Estimate (m-STAR) Spatial Multiparametric Spatio Temporal AutoRegressiveRegression: Spatial Durbin Multiplicative 

Heteroscedasticity Cross SectionsModels

l  spmstarh–Moduleto Estimate (m-STAR) Spatial Multiparametric Spatio Temporal AutoRegressiveRegression: Spatial Lag Multiplicative Heteroscedasticity Cross Sections Models

l  sptobitmstar–Moduleto Estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Lag Cross Sections Models

l  sptobitmstard–Moduleto Estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Durbin Cross Sections Models

l  sptobitmstardh–Moduleto Estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Durbin Multiplicative HeteroscedasticityCross Sections Models

l  sptobitmstarh–Moduleto Estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Lag Multiplicative Heteroscedasticity CrossSections Models

l  sptobitsar–Moduleto Estimate Tobit MLE Spatial Lag Cross Sections Regression

l  sptobitsem–Moduleto Estimate Tobit MLE Spatial Error Cross Sections Regression

l  sptobitsdm–Moduleto Estimate Tobit MLE Spatial Durbin Cross Sections Regression

l  sptobitsac–Moduleto Estimate Tobit MLE Spatial Autocorrelation Cross Sections Regression

空间面板回归

l  xsmle –Stata modules to calculate spatial Panel Regression  [Author: Belotti et.al, 2014]

l  spglsxt–Moduleto estimate Spatial Panel Autoregressive Generalized Least Squares Regression

l  spregsdmxt:Maximum Likelihood Estimation Spatial Durbin Panel Regression [Author: Shehataet.al, 2014]

l  gs2slsarxt–Moduleto estimate Generalized Spatial Panel Autoregressive Two Stage Least SquaresRegression

l  gs2slsxt–Moduleto estimate Generalized Spatial Panel Autoregressive Two-Stage Least SquaresRegression

l  spgmmxt–Moduleto estimate Spatial Panel Autoregressive Generalized Method of MomentsRegression

l  spmstardhxt–Moduleto estimate (m-STAR) Spatial Multiparametric Spatio Temporal AutoRegressiveRegression: Spatial Durbin Multiplicative Heteroscedasticity Panel Models

l  spmstardxt–Moduleto Estimate (m-STAR) Spatial Multiparametric Spatio Temporal AutoRegressiveRegression: Spatial Durbin Panel Models

l  spmstarhxt–Moduleto Estimate (m-STAR) Spatial Multiparametric Spatio Temporal AutoRegressiveRegression: Spatial Lag Multiplicative Heteroscedasticity Panel Models

l  spmstarxt–Moduleto Estimate (m-STAR) Spatial Panel Multiparametric Spatio TemporalAutoRegressive Regression Models

l  spregdhp–Module to estimate Spatial PanelHan-Philips Linear Dynamic Regression: Lag & Durbin Models

l  spregdpd–Module to estimate Spatial PanelArellano-Bond Linear Dynamic Regression: Lag & Durbin Models

l  spregfext–Module to compute Spatial Panel FixedEffects Regression: Lag and Durbin Models

l  spreghetxt–Module to Estimate Spatial PanelRandom-Effects Multiplicative Heteroscedasticity Regression: Lag and DurbinModels

l  spregrext–Module to compute Spatial PanelRandom Effects Regression: Lag and Durbin Models

l  spregsacxt–Module to Estimate Maximum LikelihoodEstimation Spatial AutoCorrelation (SAC) Panel Regression

l  spregsarxt–Module to Estimate Maximum LikelihoodEstimation Spatial Lag Panel Regression

l  spregsdmxt–Module to Estimate Maximum LikelihoodEstimation Spatial Panel Durbin Regression

l  spregsemxt–Module to Estimate Maximum LikelihoodEstimation Spatial Error Panel Regression

l  Spregxt—New Stata Module Econometric Toolkitto Estimate Spatial Panel Regression Models

l  spxttobit–Moduleto estimate Tobit Spatial Panel Autoregressive 

广义最小二乘法GLS回归

l  sptobitmstardhxt–Moduleto Estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Durbin Multiplicative HeteroscedasticityPanel Models

l sptobitmstardxt–Moduleto estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Durbin Panel Models

l sptobitmstarhxt–Moduleto estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Lag Multiplicative Heteroscedasticity PanelModels

l sptobitmstarxt–Moduleto estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Lag Panel Models

l sptobitsemxt–Moduleto estimate Tobit MLE Spatial Error Panel Regression

l sptobitsacxt–Moduleto estimate Tobit MLE Spatial AutoCorrelation (SAC) Panel Regression

l sptobitsarxt– Module to estimate Tobit MLE Spatial Lag Panel Regression

l sptobitsdmxt–Moduleto estimate Tobit MLE Spatial Panel Durbin Regression

其他程序

l china_spatdwm–Moduleto provide spatial distance matrices for Chinese provinces and cities

l usswm–Moduleto provide US state and county spatial weight (contiguity) matrices

l  spmap–Moduleto visualize spatial data

l  spseudor2–Module to calculate goodness-of-fit measures in spatial autoregressive models

l  spagg–Moduleto create aggregate source or target contagion spatial effect variable fordirected dyadic data

l  spspc–Module to create specific source or target contagion spatial effect variablefor directed dyadic data

l  spdir–Moduleto create directed dyad contagion spatial effect variable

l  spundir–Moduleto create directed dyad contagion spatial effect variable

l  spmon–Moduleto create spatial effect variable for monadic data

l  spgrid–Moduleto generate two-dimensional grids for spatial data analysis

l  spkde -Moduleto perform kernel estimation of density and intensity functions fortwo-dimensional spatial point patterns

5)SAS代码资源:

The SPATIALREGProcedure:

https://support.sas.com/rnd/app/ … ets_spatialreg.html

6) 相关论坛

Github: https://github.com/

如果对空间计量感兴趣且有一些专业基础知识,欢迎到空间计量研究小组交流访问(文后“阅读原文”)。

可以到计量经济圈社群进一步访问交流各种学术问题,这年头,我们不能强调一个人的英雄主义,需要多多汲取他人的经验教训来让自己少走弯路。

计量经济圈当前有几个阵地,他们分别是如下4个matrix:

①小鹅社群:数据软件书籍等所有资料(最多且更新频繁),

②微信群:服务于计量经济圈社群群友(最活跃),

③研究小组:因果推断, 空间计量, 面板数据(最专业),

④QQ群:2000人大群服务于社群群友(最大)。

计量经济圈是中国计量第一大社区,我们致力于推动中国计量理论和实证技能的提升,圈子以海内外高校研究生和教师为主。计量经济圈绝对六多精神:社科资料最多、社科数据最多、科研牛人最多、海外名校最多、热情互助最多、前沿趋势最多如果你热爱计量并希望长见识,那欢迎你加入到咱们这个大家庭(戳这里),要不然你只能去其他那些Open access圈子了。注意:进去之后一定要看小鹅社群“群公告”,不然接收不了群息,也不知道怎么进入咱们独一无二的微信群和QQ群在规则框架下社群交流讨论无时间限制。

只有进去之后才能够看见这个群公告

本站文章均为手工撰写未经允许谢绝转载:夜雨聆风 » 空间计量软件代码资源集锦(Matlab/R/Python/SAS/Stata), 不再因空间效应而感到孤独

评论 抢沙发

8 + 8 =
  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
×
订阅图标按钮