乐于分享
好东西不私藏

【python源码】基于YOLOv8深度学习的200种鸟类智能检测与识别系统:目标检测、深度学习实战

【python源码】基于YOLOv8深度学习的200种鸟类智能检测与识别系统:目标检测、深度学习实战

公众号

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、深度学习相关分享研究。欢迎共同学习交流!

AI

1.人脸识别与管理系统 2.车牌识别与管理系统
3.手势识别系统 4.人脸面部活体检测系统
5.YOLOv8自动标注 6.人脸表情识别系统
7.行人跌倒检测系统 8.PCB板缺陷检测系统
9.安全帽检测系统 10.生活垃圾分类检测
11.火焰烟雾检测系统
12.路面坑洞检测系统
13.钢材表面缺陷检测 14.102种犬类检测系统
15.面部口罩检测系统 16.西红柿成熟度检测
17.血细胞检测计数 18.舰船分类检测系统
19.吸烟行为检测 20.水稻害虫检测识别
21.车辆行人检测计数 22.小麦害虫检测识别

基本功能演示

在这里插入图片描述

摘要:智能鸟类检测与识别系统在生态保护、科学研究、野生动物监测、以及生态旅游等领域扮演着举足轻重的角色。本文基于YOLOv8深度学习框架,通过11788张图片,训练了一个进行鸟类智能检测与识别的目标检测模型,可检测200种不同鸟类。并基于此模型开发了一款带UI界面的鸟类智能检测与识别系统,可用于实时检测场景中的不同鸟类,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

前言

智能鸟类检测与识别系统在生态保护、科学研究、野生动物监测、以及生态旅游等领域扮演着举足轻重的角色。

首先,这类系统对生态保护有极其重要的影响,它能够帮助研究者和保护人员准确地监测鸟类种群的动态,评估受保护区域的生物多样性,及时发现稀有或濒危鸟种,从而制定更有效的保护措施。 

其次,在科学研究领域,智能识别系统能够提供大量精确的鸟类观察数据,协助研究人员进行行为学、迁徙学和生态学的研究,加深人们对鸟类习性及其生态系统的理解。在野生动物监测方面,智能检测系统可以减少人为干扰,提高数据的收集效率和准确度,助力森林管理及非法狩猎的预防。 

此外,在生态旅游业,鸟类检测与识别技术可以提升游客的体验,实现自动化识别和解说服务,让游客更深入地了解自然界的奥妙。 

综上所述,智能鸟类检测与识别系统具有广阔的应用前景,不仅可以促进生态环境保护,还能够支持科学研究,提高监测效率,且对于推动生态文明建设和发展生态旅游具有积极作用。

博主通过搜集不同种类的鸟类的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的鸟类智能检测与识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:

检测结果界面如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行200种鸟类的检测与识别,具体鸟类名称见数据集介绍部分;

2.支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3.界面可实时显示目标位置目标总数置信度用时等信息;
4.支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。单个图片检测操作如下:

批量图片检测操作如下:

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行其主要网络结构如下:

2. 数据集准备与训练

通过网络上搜集关于不同鸟类的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含11788张图片,其中训练集包含5994张图片验证集包含5794张图片,部分图像及标注如下图所示。

具体200种鸟类名称如下:

[“黑足信天翁”, “黑脚信天翁”, “黄脚信天翁”, “廓嘴安尼鸟”, “冠燕鸥”, “小艾基”, “鹦哥艾基”, “犀牛艾基”, “布氏黑鸟”, “红翅黑鸟”, “锈黑鸟”, “黄头黑鸟”, “黑喉鹀”, “靛蓝鹀”, “翠蓝鹀”, “彩鹀”, “北美红雀”, “斑点猫鸟”, “灰猫鸟”, “黄胸歌美洲鹀”, “东方红尾鸫”, “查克威尔威多”, “勃兰特鸬鹚”, “红脸鸬鹚”, “远洋鸬鹚”, “铜牛鸟”, “亮牛鸟”, “棕旋木莺”, “美洲乌鸦”, “鱼鸦”, “黑嘴杜鹃”, “红树杜鹃”, “黄嘴杜鹃”, “灰顶玫瑰雀”, “紫雀”, “北榄仙鹟”, “阿卡迪亚捕蝇鸟”, “大冠鹟”, “小鹟”, “橄榄侧鹟”, “剪翅鹟”, “朱红鹟”, “黄腹鹟”, “军舰鸟”, “北风鸦”, “赤膀鸭”, “美洲金翅雀”, “欧洲金翅雀”, “船尾椋鸟”, “角䴙䴘”, “长菊头鹬”, “枕菊部䴙䴘”, “西部䴙䴘”, “蓝色蜡嘴鸟”, “黄腹蜡嘴鸟”, “松蜡嘴鸟”, “玫瑰胸蜡嘴鸟”, “鸽鸽鸥”, “加州鸥”, “冰翼鸥”, “黑脚鸥”, “银鸥”, “象牙鸥”, “环嘴鸥”, “板翼鸥”, “西部鸥”, “安娜蜂鸟”, “红喉蜂鸟”, “棕蜂鸟”, “绿紫耳”, “长尾贼鹰”, “庞巴利贼鹰”, “蓝鸦”, “佛罗里达鸦”, “绿鸦”, “暗眼灯草鹀”, “热带王鹟”, “灰王鹟”, “环带翠鸟”, “绿翠鸟”, “派群翠鸟”, “环颈翠鸟”, “白胸翠鸟”, “红腿三趾鸥”, “角百灵”, “太平洋潜鸟”, “绿头鸭”, “西部草地百灵”, “冠秋沙鸭”, “赤胸秋沙鸭”, “知更鸟”, “夜鹰”, “克拉克的花栗鼠”, “白胸鳾”, “巴尔的摩椋鸟”, “头巾椋鸟”, “果园椋鸟”, “斯科特椋鸟”, “炉鹛”, “棕鹈”, “白鹈”, “西部啸喜鹊”, “赛氏啸鸫”, “美洲鹨”, “尖嘴夜鹰”, “角蒲鹫”, “普通鸦”, “白颈鸦”, “美洲红尾鹞”, “庚科考科克斯”, “红尾伯劳”, “大灰伯劳”, “白德麻雀”, “黑喉麻雀”, “布氏麻雀”, “尖嘴麻雀”, “白腹麻雀”, “家麻雀”, “田麻雀”, “狐麻雀”, “蚱蝉麻雀”, “哈里斯麻雀”, “亨斯洛麻雀”, “勒康德麻雀”, “林肯麻雀”, “纳尔逊尖尾麻雀”, “沙麻雀”, “海边麻雀”, “宋麻雀”, “树麻雀”, “夜麻雀”, “白冠麻雀”, “白喉麻雀”, “斑点椋鸟”, “崖燕”, “谷仓燕”, “悬崖燕”, “树燕”, “朱雀”, “夏季红雀”, “北极燕鸥”, “黑燕鸥”, “里海燕鸥”, “普通燕鸥”, “优雅燕鸥”, “福斯特燕鸥”, “小燕鸥”, “带尾鹛”, “棕色刺莺”, “鼠莺”, “黑顶莺”, “蓝头莺”, “费城莺”, “红眼莺”, “唱歌莺”, “白眼莺”, “黄喉莺”, “海湾胸莺”, “黑白莺”, “黑喉蓝莺”, “蓝翅莺”, “加拿大莺”, “角胸莺”, “天蓝莺”, “栗侧莺”, “金翅莺”, “兜帽莺”, “肯塔基莺”, “玉带莺”, “悲莺”, “野莺”, “纳什维尔莺”, “冕黄莺”, “棕榈莺”, “松莺”, “草原莺”, “金水莺”, “斯旺氏莺”, “田纳西莺”, “威尔逊莺”, “蠕虫吃莺”, “黄莺”, “北方水莺”, “路易斯安那水莺”, “波西米亚蜡嘴雀”, “雪松蜡嘴雀”, “美洲三趾啄木鸟”, “黑背啄木鸟”, “红腹啄木鸟”, “红冠啄木鸟”, “红头啄木鸟”, “绒毛啄木鸟”, “比威克鹪鹩”, “仙人掌鹪鹩”, “卡罗来纳鹪鹩”, “家用鹪鹩”, “沼泽鹪鹩”, “岩石鹪鹩”, “冬鹪鹩”, “普通黄喉”]

在这里插入图片描述
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入BirdData目录下。

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\BirdDetection\datasets\BirdData\images\train
val: E:\MyCVProgram\BirdDetection\datasets\BirdData\images\val

nc: 200
names: ['Black_footed_Albatross''Laysan_Albatross''Sooty_Albatross''Groove_billed_Ani''Crested_Auklet''Least_Auklet''Parakeet_Auklet''Rhinoceros_Auklet''Brewer_Blackbird''Red_winged_Blackbird''Rusty_Blackbird''Yellow_headed_Blackbird''Bobolink''Indigo_Bunting''Lazuli_Bunting''Painted_Bunting''Cardinal''Spotted_Catbird''Gray_Catbird''Yellow_breasted_Chat''Eastern_Towhee''Chuck_will_Widow''Brandt_Cormorant''Red_faced_Cormorant''Pelagic_Cormorant''Bronzed_Cowbird''Shiny_Cowbird''Brown_Creeper''American_Crow''Fish_Crow''Black_billed_Cuckoo''Mangrove_Cuckoo''Yellow_billed_Cuckoo''Gray_crowned_Rosy_Finch''Purple_Finch''Northern_Flicker''Acadian_Flycatcher''Great_Crested_Flycatcher''Least_Flycatcher''Olive_sided_Flycatcher''Scissor_tailed_Flycatcher''Vermilion_Flycatcher''Yellow_bellied_Flycatcher''Frigatebird''Northern_Fulmar''Gadwall''American_Goldfinch''European_Goldfinch''Boat_tailed_Grackle''Eared_Grebe''Horned_Grebe''Pied_billed_Grebe''Western_Grebe''Blue_Grosbeak''Evening_Grosbeak''Pine_Grosbeak''Rose_breasted_Grosbeak''Pigeon_Guillemot''California_Gull''Glaucous_winged_Gull''Heermann_Gull''Herring_Gull''Ivory_Gull''Ring_billed_Gull''Slaty_backed_Gull''Western_Gull''Anna_Hummingbird''Ruby_throated_Hummingbird''Rufous_Hummingbird''Green_Violetear''Long_tailed_Jaeger''Pomarine_Jaeger''Blue_Jay''Florida_Jay''Green_Jay''Dark_eyed_Junco''Tropical_Kingbird''Gray_Kingbird''Belted_Kingfisher''Green_Kingfisher''Pied_Kingfisher''Ringed_Kingfisher''White_breasted_Kingfisher''Red_legged_Kittiwake''Horned_Lark''Pacific_Loon''Mallard''Western_Meadowlark''Hooded_Merganser''Red_breasted_Merganser''Mockingbird''Nighthawk''Clark_Nutcracker''White_breasted_Nuthatch''Baltimore_Oriole''Hooded_Oriole''Orchard_Oriole''Scott_Oriole''Ovenbird''Brown_Pelican''White_Pelican''Western_Wood_Pewee''Sayornis''American_Pipit''Whip_poor_Will''Horned_Puffin''Common_Raven''White_necked_Raven''American_Redstart''Geococcyx''Loggerhead_Shrike''Great_Grey_Shrike''Baird_Sparrow''Black_throated_Sparrow''Brewer_Sparrow''Chipping_Sparrow''Clay_colored_Sparrow''House_Sparrow''Field_Sparrow''Fox_Sparrow''Grasshopper_Sparrow''Harris_Sparrow''Henslow_Sparrow''Le_Conte_Sparrow''Lincoln_Sparrow''Nelson_Sharp_tailed_Sparrow''Savannah_Sparrow''Seaside_Sparrow''Song_Sparrow''Tree_Sparrow''Vesper_Sparrow''White_crowned_Sparrow''White_throated_Sparrow''Cape_Glossy_Starling''Bank_Swallow''Barn_Swallow''Cliff_Swallow''Tree_Swallow''Scarlet_Tanager''Summer_Tanager''Artic_Tern''Black_Tern''Caspian_Tern''Common_Tern''Elegant_Tern''Forsters_Tern''Least_Tern''Green_tailed_Towhee''Brown_Thrasher''Sage_Thrasher''Black_capped_Vireo''Blue_headed_Vireo''Philadelphia_Vireo''Red_eyed_Vireo''Warbling_Vireo''White_eyed_Vireo''Yellow_throated_Vireo''Bay_breasted_Warbler''Black_and_white_Warbler''Black_throated_Blue_Warbler''Blue_winged_Warbler''Canada_Warbler''Cape_May_Warbler''Cerulean_Warbler''Chestnut_sided_Warbler''Golden_winged_Warbler''Hooded_Warbler''Kentucky_Warbler''Magnolia_Warbler''Mourning_Warbler''Myrtle_Warbler''Nashville_Warbler''Orange_crowned_Warbler''Palm_Warbler''Pine_Warbler''Prairie_Warbler''Prothonotary_Warbler''Swainson_Warbler''Tennessee_Warbler''Wilson_Warbler''Worm_eating_Warbler''Yellow_Warbler''Northern_Waterthrush''Louisiana_Waterthrush''Bohemian_Waxwing''Cedar_Waxwing''American_Three_toed_Woodpecker''Pileated_Woodpecker''Red_bellied_Woodpecker''Red_cockaded_Woodpecker''Red_headed_Woodpecker''Downy_Woodpecker''Bewick_Wren''Cactus_Wren''Carolina_Wren''House_Wren''Marsh_Wren''Rock_Wren''Winter_Wren''Common_Yellowthroat']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/BirdData/data.yaml', epochs=300, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

各损失函数作用说明:

定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;

分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;

动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。本文训练结果如下:

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5平均值为0.82,结果还是很不错的。

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Cape_May_Warbler_0108_163108.jpg"

# 加载预训练模型
# conf 0.25 object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)


# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

以上便是关于此款鸟类智能检测与识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。

【获取方式】

文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方公众号:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

end

python
MoileSAM

本站文章均为手工撰写未经允许谢绝转载:夜雨聆风 » 【python源码】基于YOLOv8深度学习的200种鸟类智能检测与识别系统:目标检测、深度学习实战

评论 抢沙发

1 + 7 =
  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
×
订阅图标按钮