当前位置:首页>文档>2025江苏省盐城市高三上学期11月期中考试数学试卷(含答案)_2024-2025高三(6-6月题库)_2024年11月试卷_1115江苏省盐城市2024-2025学年高三上学期11月期中考试(全科)

2025江苏省盐城市高三上学期11月期中考试数学试卷(含答案)_2024-2025高三(6-6月题库)_2024年11月试卷_1115江苏省盐城市2024-2025学年高三上学期11月期中考试(全科)

  • 2026-02-17 23:11:11 2026-02-17 23:05:06

文档预览

2025江苏省盐城市高三上学期11月期中考试数学试卷(含答案)_2024-2025高三(6-6月题库)_2024年11月试卷_1115江苏省盐城市2024-2025学年高三上学期11月期中考试(全科)
2025江苏省盐城市高三上学期11月期中考试数学试卷(含答案)_2024-2025高三(6-6月题库)_2024年11月试卷_1115江苏省盐城市2024-2025学年高三上学期11月期中考试(全科)
2025江苏省盐城市高三上学期11月期中考试数学试卷(含答案)_2024-2025高三(6-6月题库)_2024年11月试卷_1115江苏省盐城市2024-2025学年高三上学期11月期中考试(全科)
2025江苏省盐城市高三上学期11月期中考试数学试卷(含答案)_2024-2025高三(6-6月题库)_2024年11月试卷_1115江苏省盐城市2024-2025学年高三上学期11月期中考试(全科)
2025江苏省盐城市高三上学期11月期中考试数学试卷(含答案)_2024-2025高三(6-6月题库)_2024年11月试卷_1115江苏省盐城市2024-2025学年高三上学期11月期中考试(全科)
2025江苏省盐城市高三上学期11月期中考试数学试卷(含答案)_2024-2025高三(6-6月题库)_2024年11月试卷_1115江苏省盐城市2024-2025学年高三上学期11月期中考试(全科)
2025江苏省盐城市高三上学期11月期中考试数学试卷(含答案)_2024-2025高三(6-6月题库)_2024年11月试卷_1115江苏省盐城市2024-2025学年高三上学期11月期中考试(全科)
2025江苏省盐城市高三上学期11月期中考试数学试卷(含答案)_2024-2025高三(6-6月题库)_2024年11月试卷_1115江苏省盐城市2024-2025学年高三上学期11月期中考试(全科)
2025江苏省盐城市高三上学期11月期中考试数学试卷(含答案)_2024-2025高三(6-6月题库)_2024年11月试卷_1115江苏省盐城市2024-2025学年高三上学期11月期中考试(全科)
2025江苏省盐城市高三上学期11月期中考试数学试卷(含答案)_2024-2025高三(6-6月题库)_2024年11月试卷_1115江苏省盐城市2024-2025学年高三上学期11月期中考试(全科)

文档信息

文档格式
pdf
文档大小
2.778 MB
文档页数
10 页
上传时间
2026-02-17 23:05:06

文档内容

{#{QQABRYaQogioAAJAAQgCEQGwCEEQkgGAAQgGgBAAIAABCQFABAA=}#}{#{QQABRYaQogioAAJAAQgCEQGwCEEQkgGAAQgGgBAAIAABCQFABAA=}#}{#{QQABRYaQogioAAJAAQgCEQGwCEEQkgGAAQgGgBAAIAABCQFABAA=}#}{#{QQABRYaQogioAAJAAQgCEQGwCEEQkgGAAQgGgBAAIAABCQFABAA=}#}盐城市 2025 届高三年级第一学期期中考试 数学参考答案 1.C 2.C 3.B 4.A 5.D 6.D 7.B 8.B 9.ACD 10.AB 11.ABD     12. 0,2 13. 12 14.8 tan 2n 15.解:⑴因为函数 f(x)为偶函数,所以xR,都有 f(x) f(x),················2分 即  ex kex  sin  x    ex kex  sinx, 即xR,都有  k1  ex ex  sinx0,···············································4分 所以k 1.··························································································6分 ⑵当k 0时, f(x)exsinx, f(x) f(x)exsinxexsin(x)(ex ex)sinx , 所以(ex ex)sinx0.············································································9分 当x0时,显然不合题意; 当x  0,2  时,ex ex 0,则sinx0,此时,x  0,  ; 当x  2,0  时,ex ex 0,则sinx0,此时,x  ,0  ,·············12分 综上,不等式 f(x) f(x)0的解集为  ,0    0,  .·····························13分   16.解:⑴因为 f(x)sinxcosx 2sin(x ),所以 f(A) 2sin(A ) 2, 4 4  所以sin(A )1,············································································· 4分 4    又因为A 0, ,所以A .································································6分 4 1 2 1 2 ⑵因为 ABBC  BABC   BC ,所以BABC  BC , 2 2 1 法一:所以BA在BC方向上的投影向量为 BC , 2 过点A作边BC的垂线,垂足为H ,则H 是边BC的中点, 所以AB  AC ,即bc,······································································9分 在ABC中,因为a2 b2 c2 2bccosA,即12b2  2b2, 第 1 页 共 6 页 {#{QQABRYaQogioAAJAAQgCEQGwCEEQkgGAAQgGgBAAIAABCQFABAA=}#}2 2 所以b2  ,·············································································· 12分 2 1 2 21 所以S  bcsin A b2  .················································15分 ABC 2 4 4 1 a2 c2 b2 a2 c2 b2 1 法二:所以cacosB  即ca   , 2 2ac 2 2 即a2 c2 b2 1即bc,···································································· 9分 在ABC中,因为a2 b2 c2 2bccosA,即12b2  2b2, 2 2 所以b2  ··················································································12分 2 1 2 21 所以S  bcsin A b2  .················································15分 ABC 2 4 4 17.解:⑴设AD  x, 1 1  9 则S   AB ACsinBAC  63sin  3, BAC 2 2 3 2 1 1  3x S   AB ADsinBAD  6xsin  , BAD 2 2 6 2 1 1  3x S   AC ADsinCAD  3xsin  , CAD 2 2 6 4 由S  S S ············································································3分 BAC BAD CAD 9 3 3 得 3  x x, 2 2 4 得x 2 3 ,即AD 的长为2 3 .································································5分  ⑵在VABC 中,由AB 6,AC 3,BAC  及余弦定理可得 3  BC2  AB2  AC2 2AB ACcosBAC 62 32 263cos 27, 3 得BC 3 3,·······················································································7分  又AB 6,AC 3,得AB2  AC2  BC2,得ACB  , 2 1   而CAD  BAC  ,∴ADC ACDCAD  , 2 6 3 又VPCD为等腰三角形,∴VPCD为等边三角形,·······································9分 第 2 页 共 6 页 {#{QQABRYaQogioAAJAAQgCEQGwCEEQkgGAAQgGgBAAIAABCQFABAA=}#} 在VACD 中,AD 2 3,AC 3,CAD  ,由余弦定理可得 6  CD2  AD2  AC2 2AD ACcosDAC (2 3)2 32 22 33cos 3, 6 得CD  3 ,······················································································ 11分   则PD  3,BD 2 3 ,设ABP ,则DBP  ,BPD  , 6 6 PD BD 在△DBP 中,由正弦定理得  , sinDBP sinBPD 3 2 3  则   ,···································································13分 sin( ) sin( ) 6 6   1 3 1 3 得2sin( )sin( ),则2( cos sin) cos sin, 6 6 2 2 2 2 sin 3 得cos3 3sin,得tan  , cos 9 3 即tanABP的值为 .·······································································15分 9 18.⑴证:由(a 1)2 4S ,得(a 1)2 4S (n2), n n n1 n1 所以(a 1)2 (a 1)2 4a ,即(a 1)2 (a 1)2, n n1 n n n1 得(a a 2)(a a )0,··································································2分 n n1 n n1 因数列 a  各项为正,所以a a 0,于是a a 2(n2), n n n1 n n1 所以数列 a  是公差为2的等差数列,·······················································3分 n 又(a 1)2 4S 4a ,所以a 1, 1 1 1 1 所以a 12(n1)2n1.····································································· 4分 n ⑵解:由⑴知,a 2n1, n 1 所以T  (12n1)nnnn2, n 2 2n2 1 由T 2n2 (n1)2,即nn2 2n2 (n1)2,所以 2, n n 2n2 1 令c  2,················································································6分 n n 2n11 2n2 1 n(2n11)(n1)(2n2 1) 2n2(n1)1 所以c c     , n1 n n1 n n(n1) n(n1) 当n1时,c c ,即c c ; n1 n 2 1 第 3 页 共 6 页 {#{QQABRYaQogioAAJAAQgCEQGwCEEQkgGAAQgGgBAAIAABCQFABAA=}#}当n2时,c c ,即c c ; n1 n 2 3 当n3时,c c ;············································································ 8分 n1 n 20 1 所以c  21,故的最大值为1.··········································9分 2 2 ⑶解:由⑴得b b b 22n1,所以b b b 22n1, n n1 n2 n1 n2 n3 于是b 4b ,又b b 1,bb b 21,所以b 22b ,·······················10分 n3 n 1 2 1 2 3 3 1 由P (b b Lb )(b b Lb )(b b Lb ) 3k 1 4 3k2 2 5 3k1 3 6 3k 1(14k) 4 所以P 4(b b Lb )4[ ] (4k 1), 3k 1 4 3k2 14 3 4 n 所以当n3k时,P  (43 1);···························································12分 n 3 由P (b b Lb )(b b Lb )(b b Lb )b , 3k1 4 7 3k1 2 5 3k1 3 6 3k 1 1(14k) 7 4 因b 4b 4,所以P 7(b b Lb )17 1 4k  , 4 1 3k1 2 5 3k1 14 3 3 P 1也适合上式, 1 7 n1 4 所以当n3k 1时,P  4 3  ;·····················································14分 n 3 3 由P (b b Lb )(b b Lb )(b b Lb )b b , 3k2 4 7 3k1 5 8 3k2 3 6 3k 1 2 1(14k) 10 4 又b 4b 4,所以P 10(b b Lb )210[ ]2 4k  , 5 2 3k2 1 4 3k2 14 3 3 P 2也适合上式, 2 10 n2 4 所以当n3k 2时,P  4 3  ;···················································16分 n 3 3 4 n  (43 1),n3k,kN* 3  7 n1 4 综上所述,P  4 3  ,n3k 1,kN .···········································17分 n 3 3 10 n2 4  4 3  ,n3k 2,kN  3 3 19.解:⑴ f(x)(x1)ex,··········································································1分 当x1时, f(x)0, f(x)在  1,  单调递增; 第 4 页 共 6 页 {#{QQABRYaQogioAAJAAQgCEQGwCEEQkgGAAQgGgBAAIAABCQFABAA=}#}当x1时, f(x)0, f(x)在  ,1  单调递减; 1 所以[f(x)]  f(1) ,无极大值.····················································4分 极小值 e 注:未说明无极大值的扣1分. f(lnx) ⑵由a3axln3 0,a 0得ax3axln3xlnx0, x 得3axln3ax  xlnx, 则 f  ln3ax   f  lnx  ,且lnx0,即x1,············································6分 lnx 由⑴中 f(x)的单调性及ln3ax 0,lnx0知ln3ax lnx,变量分离得:a , xln3 lnx 设(x) ,x(1,),································································8分 xln3 1lnx 则(x) ,x(1,), x2ln3 当x(1,e)时,(x)0,(x)在(1,e)上单调递增; 当x(e,)时,(x)0,(x)在(e,)上单调递减; 1 1 所以(x) (e) ,即 0a , max eln3 eln3 1 故实数a的取值范围为 (0, ].··························································10分 eln3 ⑶由 f(m) f(n)k(mn)2及mn0,设mnt 0,n x0, 则上式可化为 f(xt) f(x)kt2, 即对任意的x,t 0,(xt)ext xex kt2恒成立, 设h(x)(xt)ext xex kt2,x 0,·················································12分 则h(x)(xt1)ext (x1)ex,x 0, 则h(x)(x1)(ext ex)text 0, 则h(x)在(0,)上单调递增,所以h(x)h(0)tet kt2, 由题意知对任意的t 0都有tet kt2 0,··············································· 14分 et et 变量分离得k  ,t 0,设g(t) ,t 0,·····································15分 t t 第 5 页 共 6 页 {#{QQABRYaQogioAAJAAQgCEQGwCEEQkgGAAQgGgBAAIAABCQFABAA=}#}ettet et t1  则g(t)  ,t 0, t2 t2 当t 1时, g(t)0,g(t)在  1,  上单调递增; 当0t 1时, g(t)0,g(t)在  0,1  上单调递减; 所以g(x)  g(1)e, min 得k的取值范围为(,e].····································································17分 第 6 页 共 6 页 {#{QQABRYaQogioAAJAAQgCEQGwCEEQkgGAAQgGgBAAIAABCQFABAA=}#}