【MATLAB源码】6G波形:OTFS 高移动性通感一体化仿真平台
🚀 6G OTFS 高移动性通感一体化仿真平台
面向 6G 高铁与低轨卫星场景的下一代波形完整实现同时支持高多普勒鲁棒传输 (High Mobility) 与雷达感知 (ISAC) 功能
📌 为什么选择本仿真平台?
在 6G 高铁 (High-Speed Train) 和 低轨卫星 (LEO Satellite) 场景下,传统 OFDM 波形面临严重的子载波间干扰 (ICI)。本平台基于 OTFS (Orthogonal Time Frequency Space) 技术,提供了一套完整的抗多普勒解决方案,完美解决了高移动性场景下的通信可靠性与通感一体化需求。
|
|
|
|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
🎯 核心价值
🔬 学术研究价值
|
💼 工程应用价值
|
⚡ 技术亮点
🌊 双域变换信号处理流
本平台完整实现了 OTFS 的核心双域变换架构,清晰展示了信号在 DD 域、TF 域和时域之间的流转:
ounter(lineounter(lineounter(lineounter(lineX_DD ──► [ISFFT] ──► X_TF ──► [Heisenberg] ──► s(t)│ │ │DD->TF TF->Time 时域变换(预编码) (IFFT)
📊 性能指标 (实测数据)
基于 Demo Step 10 & Step 4 实测结果
|
|
|
|
|
|
|---|---|---|---|---|
| BER @ 350km/h |
|
|
1e-5 |
|
| BER @ 500km/h |
|
|
1e-4 |
|
| PAPR |
|
|
~11 dB |
|
| 感知精度 |
|
|
米级/米每秒 |
|
🖥️ 运行环境
-
MATLAB 版本: R2023b 或 R2024b (推荐) -
依赖工具箱: -
Signal Processing Toolbox (必须) -
Communications Toolbox (推荐) -
5G Toolbox (可选,用于 TDL/CDL 信道生成)
📄 文档体系预览
本平台提供 “代码+算法” 双轨制文档,助您从理论推导到代码落地无缝衔接。
📘 算法原理文档
包含 2D 循环卷积推导、海森堡变换性质、MP 消息传递算法因子图推导。
📒 代码使用指南
包含核心 API 字典 (otfs_mod, mp_detector)、输入输出维度说明及 Demo 运行指引。

💻 核心代码展示
我们追求 “代码即文档” 的可读性:
🔥 核心机制:2D 循环卷积信道 (src/channel/apply_dd_channel.m)
ounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(linefunction Y_DD = apply_dd_channel(X_DD, H_DD, snr_dB)% APPLY_DD_CHANNEL 在 DD 域应用信道 (核心物理意义)%% 原理: OTFS 中的时变信道等效为 DD 域的 "2D 循环卷积"% Y[k,l] = H[k,l] * X[k,l] (在 2D 频域相乘)%% 算法: 利用 2D-FFT 的卷积性质加速计算% Y = IFFT2( FFT2(H) .* FFT2(X) )% 1. 变换到 2D 频域 (辛傅里叶对偶域)H_freq = fft2(H_DD);X_freq = fft2(X_DD);% 2. 频域点乘 (等价于 DD 域卷积)Y_temp = ifft2(H_freq .* X_freq);% 3. 添加噪声if nargin >= 3% ... (计算噪声功率并叠加 AWGN)endend
🚀 消息传递检测器 (src/receiver/mp_detector.m)
ounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(lineounter(linefunction X_hat = mp_detector(Y, H, N0, iter)% MP_DETECTOR 消息传递迭代检测%% 适用于大规模 OTFS 系统的低复杂度检测算法% 复杂度: O(N_iter * M * N * L), 远低于 MMSE 的 O((MN)^3)% 初始化消息 (均值与方差)mu_x = zeros(M, N);var_x = ones(M, N);for i = 1:iter% 1. 观察节点更新 (Interference Cancellation)% ...% 2. 变量节点更新 (Symbol Estimation)% ...% 3. 阻尼与收敛判决endend
🎬 一键运行
ounter(lineounter(lineounter(line>> cd demos>> demo_step10_nr_6g_evolution % 运行 6G 演进旗舰演示 (CDL信道 + 500km/h)>> demo_step3_mmse % 运行 MMSE 均衡性能基准
结果预览:













































🛒 获取方式
📚 参考文献
[1] R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, “Orthogonal time frequency space modulation,” in Proc. IEEE WCNC, Mar. 2017, pp. 1–6.
[2] P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501–6515, Oct. 2018.
[3] 3GPP TR 38.901, “Study on channel model for frequencies from 0.5 to 100 GHz,” v17.0.0, Mar. 2022.
[4] Z. Wei, W. Yuan, S. Li, J. Yuan, G. Bharatula, R. Hadani, and L. Hanzo, “Orthogonal time-frequency space modulation: A promising next-generation waveform,” IEEE Wireless Commun., vol. 28, no. 4, pp. 136–144, Aug. 2021.
[5] A. Farhang, A. RezazadehReyhani, L. E. Doyle, and B. Farhang-Boroujeny, “Low complexity modem structure for OFDM-based orthogonal time frequency space modulation,” IEEE Wireless Commun. Lett., vol. 7, no. 3, pp. 344–347, Jun. 2018.
[6] Cohere Technologies, “R1-162929: OTFS waveform for next generation RAT overview,” in 3GPP TSG RAN WG1 Meeting #84bis, Busan, South Korea, Apr. 2016.
[7] S. K. Mohammed, “Derivation of OTFS modulation from first principles,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 7619–7636, Aug. 2021.
[8] L. Gaudio, M. Kobayashi, G. Caire, and G. Colavolpe, “Performance analysis of joint radar and communication using OFDM and OTFS,” in Proc. IEEE ICCW, May 2019, pp. 1–6.
夜雨聆风
