乐于分享
好东西不私藏

每周一书《理解深度学习 pdf》分享

每周一书《理解深度学习 pdf》分享

内容简介

一部权威、通俗、前沿的深度学习指南。从机器学习基础知识到前沿模型,《理解深度学习》精选关键理论与尖端主题,以直观形式呈现高密度的核心知识。

•涵盖热门主题:如Transformer模型与扩散模型(Diffusion Model)。•化繁为简:先以通俗语言阐释复杂概念,再辅以数学公式与视觉图解深入解析。•实践导向:引导读者动手实现模型的初级版本。•配套资源丰富:提供教师课件、习题及Python Notebook编程练习。•适用读者:适合已掌握应用数学基础知识的本科生、研究生及从业者。

编辑推荐

在当今这个信息爆炸的时代,获取学习资料的渠道并不匮乏,各类书籍和视频资源可谓琳琅满目。但我始终没有找到一本合适的“人工智能入门指南”。一部分书籍罗列了许多新颖的算法,但缺乏深入剖析,浮于表面;它们更适合作为科普读物,对于希望深入学习的读者来说,内容深度是远远不够的。一部分书籍从最基础的数学原理入手,详细列出相关公式,但学习门槛较高;而且即便完全掌握了这些原理,若想将算法落地,仍需要补充对应的编程技能。还有一部分书籍侧重实践应用,提供了大量示例代码和详细讲解,却容易让读者陷入“知其然”而“不知其所以然”的困境。

直到阅读了亚东老师推荐的Understanding Deep Learning后,我意识到终于找到理想的“指南书”了。本书从最基础的浅层神经网络入手,逐步深入,直至扩散模型,内容包罗万象。在基础模型章节中,Simon教授对每个问题的建模和公式推导都进行了细致入微的讲解;在高级模型章节中,阐述原理,还深入探讨模型的应用场景及前沿研究趋势。如果你潜心研读每一章节、每一个公式,会发现Simon教授倾注了大量心血,力求将复杂的概念以最清晰的方式呈现给读者。深度学习的难点之一在于如何理解高维空间中的问题,Simon教授通过降维和可视化手段,将梯度下降、迭代求解等抽象过程直观展现出来,极大地降低了理解门槛。本书讲解算法原理,还附有每个模型的Python Notebook源代码。无论你是具备一定数学基础的本科生,还是希望深入了解人工智能技术的软件工程师,本书都是你的上佳选择。

获取方式

公众号回复【理解深度学习

疯狂Python讲义》分享!

《统计学习方法》分享!免费下载!

《数学之美 (第二版)》PDF电子书

《深度学习》分享!

《数字图像处理(第三版)》分享!

《 Python神经网络编程》分享!

《代码整洁之道》分享!

-END-

关注中科院计算所培训中心

阅读更多精彩内容

▽▽▽

×
订阅图标按钮