当前位置:首页>文档>2023年11月诊断性测试数学答案(1)_2023年11月_0211月合集_2024届THUSSAT中学生标准学术能力诊断性测试高三上学期11月月考_THUSSAT中学生标准学术能力诊断性测试2024届高三上学期11月月考数学

2023年11月诊断性测试数学答案(1)_2023年11月_0211月合集_2024届THUSSAT中学生标准学术能力诊断性测试高三上学期11月月考_THUSSAT中学生标准学术能力诊断性测试2024届高三上学期11月月考数学

  • 2026-02-17 19:31:16 2026-02-17 19:27:43

文档预览

2023年11月诊断性测试数学答案(1)_2023年11月_0211月合集_2024届THUSSAT中学生标准学术能力诊断性测试高三上学期11月月考_THUSSAT中学生标准学术能力诊断性测试2024届高三上学期11月月考数学
2023年11月诊断性测试数学答案(1)_2023年11月_0211月合集_2024届THUSSAT中学生标准学术能力诊断性测试高三上学期11月月考_THUSSAT中学生标准学术能力诊断性测试2024届高三上学期11月月考数学
2023年11月诊断性测试数学答案(1)_2023年11月_0211月合集_2024届THUSSAT中学生标准学术能力诊断性测试高三上学期11月月考_THUSSAT中学生标准学术能力诊断性测试2024届高三上学期11月月考数学
2023年11月诊断性测试数学答案(1)_2023年11月_0211月合集_2024届THUSSAT中学生标准学术能力诊断性测试高三上学期11月月考_THUSSAT中学生标准学术能力诊断性测试2024届高三上学期11月月考数学
2023年11月诊断性测试数学答案(1)_2023年11月_0211月合集_2024届THUSSAT中学生标准学术能力诊断性测试高三上学期11月月考_THUSSAT中学生标准学术能力诊断性测试2024届高三上学期11月月考数学
2023年11月诊断性测试数学答案(1)_2023年11月_0211月合集_2024届THUSSAT中学生标准学术能力诊断性测试高三上学期11月月考_THUSSAT中学生标准学术能力诊断性测试2024届高三上学期11月月考数学
2023年11月诊断性测试数学答案(1)_2023年11月_0211月合集_2024届THUSSAT中学生标准学术能力诊断性测试高三上学期11月月考_THUSSAT中学生标准学术能力诊断性测试2024届高三上学期11月月考数学
2023年11月诊断性测试数学答案(1)_2023年11月_0211月合集_2024届THUSSAT中学生标准学术能力诊断性测试高三上学期11月月考_THUSSAT中学生标准学术能力诊断性测试2024届高三上学期11月月考数学

文档信息

文档格式
pdf
文档大小
0.463 MB
文档页数
8 页
上传时间
2026-02-17 19:27:43

文档内容

中学生标准学术能力诊断性测试 2023年 11月测试 数学参考答案 一、单项选择题:本题共 8小题,每小题 5分,共 40 分.在每小题给出的四个选项中,只有 一项是符合题目要求的. 1 2 3 4 5 6 7 8 C A B B A B D D 二、多项选择题:本题共 4小题,每小题 5分,共 20 分.在每小题给出的四个选项中,有多 项符合题目要求.全部选对的得5分,部分选对但不全的得2分,有错选的得0分. 9 10 11 12 BD AC AB ACD 三、填空题:本题共4小题,每小题5分,共20分. 7 14. 13.1 2 10+ 2 15. 16.35 4 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分) 2csinB sinC 2sinCsinB sinC (1) = ,所以由正弦定理得 = , b cosB sinB cosB 1  cosB = ,得B = ············································································ 3分 2 3 3 + 3 tan A+tanB tanC =−tan(A+B)=− =− 4 =−5 3 ················· 5分 1−tan AtanB 3 1−  3 4 (2) ABC内切圆的面积为,所以内切圆半径r=1, 由圆的切线性质得c+a−b=2 3,b=c+a−2 3=3+ 3 ····························· 7分 由余弦定理得b2 =c2+a2−ac,  ( 3+ 3 )2 =c2 +a2 −ac=(a+c)2 −3ac,将a+c=3+3 3代入, 第1页 共8页 {#{QQABLYQUggCgQBBAAQhCAwEQCgAQkBACAAoGxAAIMAIBgRFABAA=}#}1  ac=8+4 3,S = acsin =2 3+3 ·············································· 10分 ABC 2 3 1 (或a+b+c=6+4 3,S = r(a+b+c)=2 3+3 ······················ 10分) ABC 2 18.(12分) (1)过D作AB的垂线交AB于H点,设AC= AB=a, 2 ( ) 则BC = 2a,BD=2a,HD= HB = BD = 2a,AH = BH −BA= 2−1 a, 2 AD= AH2 +DH2 = 5−2 2a, 由题意得,二面角C−SA−D的平面角为CAD, ········································· 2分 ( ) 34 5+2 2 DH 2 cosCAD= = = ············································ 4分 DA 5−2 2 17 (2)分别以 AB,AC,AS 为 x 轴,y 轴,z 轴建立直角坐标系,A(0,0,0),B(a,0,0) , C(0,a,0),S(0,0,h) ,则E ( a,0,(1−)h ) ,F ( 0,a,(1−)h ) , SE SF SB=SC且 = =,SE = SF ····················································· 6分 SB SC 又 SAB SAC,BSA=CSA,那么SAE SAF , 则AE = AF ····························································································· 8分 故SEF 与AEF 都是等腰三角形,取EF的中点G,则SG与AG均垂直于EF, 1 1  1 1  1 1  G  a, a,(1−)h  ,SG =  a, a,−h  ,AG =  a, a,(1−)h  , 2 2  2 2  2 2  平面AEF ⊥平面SBC等价于SG ⊥ AG ················· 10分 a22 a22 SGAG = + −h(1−h)h=0, 4 4 2 又 SCB =60,a =h,= ························ 12分 3 19.(12分) 1 (1) 2a =a +2,2(a −2)=a −2,即a −2= (a −2) , n+1 n n+1 n n+1 2 n 第2页 共8页 {#{QQABLYQUggCgQBBAAQhCAwEQCgAQkBACAAoGxAAIMAIBgRFABAA=}#}1 a −2 是公比为 的等比数列 ······························································· 2分 n 2 n−1 n−1 1 1 a −2=3 ,a =2+3 ····················································· 4分     n 2 n 2  1 1 2 1 n−1  1 n (2) S =a +a + +a =2n+31+ +   + +    =2n+61−    n 1 2 n  2 2 2   2  ············································································································· 6分 n n 1 1 1 S −2n−6=−6 , S −2n−6 =6  ,     n 2 n 2 2023 即2n−1 6069,n取最小值14 ·································································· 8分 2 n−1 C 2(n+1) (3) C =n   , n+1 = 1,得n2, n 3 C 3n n 4 即C C ,有C C C ,又C =,C =C = , n+1 n 3 4 5 1 2 3 3 故 C  中最大项为C ,C ······································································· 10分 n 2 3 7 4 7 又 b  中最小值为2,(b ) −(C )  ,即2 −  , m m min n max 3 3 3 7 (3−7)(+1)0,又0, ················································· 12分 3 20.(12分) (1)由题意可知:X的所有可能取值为2.3,0.8,0.5, 1 3 4 P(X =2.3)=   =0.3 ······································································ 1分 2 4 5 X =0.8包含的可能为“高低高”“低高高”“低低高”, 1 1 4 1 3 4 1 1 4 P(X =0.8)=   +   +   =0.5 ·········································· 2分 2 4 5 2 4 5 2 4 5 P(X =0.5)=1−0.3−0.5=0.2 ··································································· 3分 X的分布列为: X 2.3 0.8 0.5 P 0.3 0.5 0.2 第3页 共8页 {#{QQABLYQUggCgQBBAAQhCAwEQCgAQkBACAAoGxAAIMAIBgRFABAA=}#}·············································································································· 4分 数学期望E(X)=1.19 ················································································ 5分 (2)设升级后一件产品的利润为Y, Y的所有可能取值为2.3−a,0.8−a,0.5−a ····················································· 6分 1  3 4 6b+3 P(Y =2.3−a)=  +b    = ························································· 7分 2  4 5 10 1  3 4 1  1 4 1  1 4 5−6b P(Y =0.8−a)=  −b    +  +b    +  −b    = ············· 8分 2  4 5 2  4 5 2  4 5 10 6b+3 5−6b 1 P(Y =0.5−a)=1− − = ························································ 9分 10 10 5 6b+3 5−6b 1 E(Y)=(2.3−a) +(0.8−a) +(0.5−a) =1.19+(0.9b−a) 10 10 5 ············································································································ 11分 E(Y) E(X)0.9b−a0, 1 10a 1 即: b ( a0,0.4) (备注: 不写出不扣分) ······························· 12分 2 9 2 21.(12分) (1) AB + AF + BF =4 2,即 AF + BF + AF + BF =4 2, 1 1 2 2 1 1 又 AF + AF = BF + BF =2a,4a=4 2,a= 2 ······························· 2分 1 2 1 2 c 2 又 e= = ,c=1,b=1, a 2 x2 故椭圆E的方程是 + y2 =1 ······································································ 4分 2 (2)依题意知直线BC的斜率存在,设直线BC:y=kx+m, x2 x2 代入 + y2 =1,得 +(kx+m)2 =1, 2 2 1  即 +k2  x2 +2kmx+m2 −1=0 ①, 2  第4页 共8页 {#{QQABLYQUggCgQBBAAQhCAwEQCgAQkBACAAoGxAAIMAIBgRFABAA=}#}=(2km)2 −4   1 +k2   ( m2 −1 ) =−2m2 +2+4k2 0, 2  即2k2 −m2 +10 ②, 设B(x ,y ),C(x ,y ) ,则A(x ,−y ) , 1 1 2 2 2 2 −2km m2 −1 x +x = x x = 1 2 1 ③, 1 2 1 ④ ····················································· 6分 +k2 +k2 2 2 A,F ,B三点共线,F (1,0) ,直线AB不与坐标轴垂直, 2 2 y −y  1 = 2 ,(x −1)(kx +m)=−(x −1)(kx +m) , x −1 x −1 2 1 1 2 1 2 2kx x +m(x +x )−k(x +x )−2m=0, 1 2 1 2 1 2 2k ( m2 −1 ) 2km2 2k2m  − + −2m=0 1 1 1 , +k2 +k2 +k2 2 2 2 2km2−2k−2km2+2k2m−m−2k2m=0, m=−2k,直线BC: y =k(x−2) , 1 由②得:2k2 −4k2 +10,k2  , 2 3 k BC = 1+k2 x −x ,点F (−1,0) 到直线BC:kx−y−2k =0的距离d = , 1 2 1 1+k2 1 3 S = BC d = k x −x ································································· 8分 F 1 BC 2 2 1 2 2    4k2  4 ( 4k2 −1 ) x −x = (x +x )2 −4x x =   − 1 2 1 2 1 2 1 1  +k2  +k2  2  2 第5页 共8页 {#{QQABLYQUggCgQBBAAQhCAwEQCgAQkBACAAoGxAAIMAIBgRFABAA=}#}16k4 −4 ( 4k2 −1 )1 +k2    2  2−4k2 = = , 2 2 1  1  +k2 +k2     2  2  k2( 2−4k2) S =3 (k 0) , F 1 BC ( 1+2k2)2 t−1 设2k2+1=t 1,则k2 = , 2 (t−1)(2−t) −t2 +3t−2 1 2 1 S =3 =3 =3 −2 +3 −1   F 1 BC t2 t2 t t 2 1 3 1 =3 −2 − + ··································································· 10分   t 4 8 1 3 4 4 1 所以当 = 时,即t = ,2k2 +1= ,k2 = (符合题意), t 4 3 3 6 3 2 6 3 2 S 的最大值为 ,所以当k = 时,FBC的面积取最大值为 FBC 1 1 4 6 4 ············································································································ 12分 22.(12分) (1)定义域为 (−,−1) (1,+) , 由题意知 ( x2 −x ) ln ( x −1 ) =ax,则 (x−1)ln ( x −1 ) =a有三个不同的实数根, 当x 1时,令g(x)=(x−1)ln(x−1) , g(x)=ln(x−1)+1,g(x) 在x(1,+) 上单调递增,  1 又g  1+  =0,  e  1  1  g(x) 在x  1,1+ 上单调递减,在x  1+ ,+ 上单调递增,  e  e   1 1 g(x) g  1+  =− ·············································································· 2分  e e 第6页 共8页 {#{QQABLYQUggCgQBBAAQhCAwEQCgAQkBACAAoGxAAIMAIBgRFABAA=}#}当x−1时,令h(x)=(x−1)ln(−x−1) , x−1 1 2 x+3 h(x)=ln(−x−1)+ ,h(x)= + = , x+1 x+1 (x+1)2 (x+1)2 又h(−3)=0,h(x) 在 (−,−3) 上单调递减,在 (−3,−1) 上单调递增, h(x)h(−3)=2+ln20, h(x) 在 (−,−1) 上单调递增 ····································································· 5分 又h(−2)=0, 当x→−1−时,h(x)→+,当x→−时,h(x)→−, 当x→1+时,g(x)→0− ,当x→+时,g(x)→+, 1 − a0 ··························································································· 6分 e a (2)由已知可知 (x−1)ln ( x −1 ) = 有3个零点x,x ,x , x 1 2 3 不妨设x x x , 1 2 3 1 − a 1 显然−2 x −1,由(1)中函数g(x) 性质且  e − , 1 1 1 e 1+ 1+ e e 1 1 x 1+  x 2, 2 e 3 2 2 只需证x +x 2+ ,即x 2+ −x ···················································· 8分 2 3 e 3 e 2   1   2   2  又 g  2  1+  −x  −g(x )=  1+ −x  ln  1+ −x  −(x −1)ln(x −1)0,   e 2  2  e 2   e 2  2 2 上面不等式证明如下:  2   2   1 令(x)=  1+ −x  ln  1+ −x  −(x−1)ln(x−1),x  1,1+ ,  e   e   e 第7页 共8页 {#{QQABLYQUggCgQBBAAQhCAwEQCgAQkBACAAoGxAAIMAIBgRFABAA=}#} 2   1 (x)=−ln  1+ −x  −ln(x−1)−2,x  1,1+   e   e  2   =ln  1+ −x  (x−1)  −20,  e    1 (x) 在x  1,1+ 上单调递增,  e  1 (x)  1+  =0 ··········································································· 10分  e 1 2 1 又−x −1− ,2+ −x 1+ , 2 e e 2 e   1  g  2  1+  −x   g(x ) ,又显然有g(x ) g(x ) ,   e 2  2 2 3  1 2  1+  −x  x ,  e 2 3 2 x +x 2+ , 2 3 e 2 x +x +x  ·················································································· 12分 1 2 3 e 第8页 共8页 {#{QQABLYQUggCgQBBAAQhCAwEQCgAQkBACAAoGxAAIMAIBgRFABAA=}#}