当前位置:首页>文档>数学(1)_2026年1月_260123四川省绵阳市2026届高三上学期第二次诊断性考试(绵阳高三二诊)_四川省绵阳市2026届高三上学期第二次诊断性考试数学(A)试题含答案

数学(1)_2026年1月_260123四川省绵阳市2026届高三上学期第二次诊断性考试(绵阳高三二诊)_四川省绵阳市2026届高三上学期第二次诊断性考试数学(A)试题含答案

  • 2026-02-12 15:29:34 2026-02-12 15:29:34

文档预览

数学(1)_2026年1月_260123四川省绵阳市2026届高三上学期第二次诊断性考试(绵阳高三二诊)_四川省绵阳市2026届高三上学期第二次诊断性考试数学(A)试题含答案
数学(1)_2026年1月_260123四川省绵阳市2026届高三上学期第二次诊断性考试(绵阳高三二诊)_四川省绵阳市2026届高三上学期第二次诊断性考试数学(A)试题含答案
数学(1)_2026年1月_260123四川省绵阳市2026届高三上学期第二次诊断性考试(绵阳高三二诊)_四川省绵阳市2026届高三上学期第二次诊断性考试数学(A)试题含答案
数学(1)_2026年1月_260123四川省绵阳市2026届高三上学期第二次诊断性考试(绵阳高三二诊)_四川省绵阳市2026届高三上学期第二次诊断性考试数学(A)试题含答案
数学(1)_2026年1月_260123四川省绵阳市2026届高三上学期第二次诊断性考试(绵阳高三二诊)_四川省绵阳市2026届高三上学期第二次诊断性考试数学(A)试题含答案
数学(1)_2026年1月_260123四川省绵阳市2026届高三上学期第二次诊断性考试(绵阳高三二诊)_四川省绵阳市2026届高三上学期第二次诊断性考试数学(A)试题含答案
数学(1)_2026年1月_260123四川省绵阳市2026届高三上学期第二次诊断性考试(绵阳高三二诊)_四川省绵阳市2026届高三上学期第二次诊断性考试数学(A)试题含答案
数学(1)_2026年1月_260123四川省绵阳市2026届高三上学期第二次诊断性考试(绵阳高三二诊)_四川省绵阳市2026届高三上学期第二次诊断性考试数学(A)试题含答案
数学(1)_2026年1月_260123四川省绵阳市2026届高三上学期第二次诊断性考试(绵阳高三二诊)_四川省绵阳市2026届高三上学期第二次诊断性考试数学(A)试题含答案

文档信息

文档格式
docx
文档大小
0.422 MB
文档页数
9 页
上传时间
2026-02-12 15:29:34

文档内容

绵阳市高中 2023 级第二次诊断性考试 数学参考答案及评分标准 一、选择题:本题共8小题,每小题5分,共40分. 1.D 2.C 3.A 4.B 5.C 6.D 7.B 8.A 二、选择题:本大题共3小题,每小题6分,共18分.全部选对的得6分,选对但不 全的得部分分,有选错的得0分. 9.BD 10.ABD 11.ABD 三、填空题:本题共3个小题,每小题5分,共15分. 12.60◦; 13.6; 14.2 四、解答题:本题共5小题,第15题13分,第16、17小题15分,第18、19小题17 分,共77分.解答应写出文字说明、证明过程或演算步骤. 15.解:(1)由正弦定理得: ,······························2分 又∵ ,········································································3分 ∴ ,························································4分 ∴ ,······································5分 ∴ ,·········································································6分 又sinB , ∴ ;······················································································7分 (2)由余弦定理: ,·························9分 ∴ ,·······················································································11分 ∵△ABC的周长为8, ∴ ,·························································12分 ∴c=2,则 .················································································13分 第 1 页 共 9 页16.解:(1)∵ ,························································2分 ∴ ,又 ,··························································4分 ∴所求切线方程为: ,·························································6分 (2)∵ ,····························8分 所以由 ,得 的单调递增区间为:(2,3),(6,+∞);·················9分 由 得 的单调递减区间为:(3,6),······································10分 ∵ , ,····················································12分 ∵ ,则 ,····································14分 所以 的最小值为 .·····························································15分 17.解:(1)证明:∵ , , ∴两式相减得 ,···········2分 即 ,·······································································4分 又∵ , ∴数列 是首项为2,公比为2的等比数列;···································6分 (2)由(1)易得, ,··························································7分 , , ∴两式相加得 ,·······················8分 即 , ,·································9分 当 时, 满足上式, 第 2 页 共 9 页∴数列 是首项为4,公差为4的等差数列,易得 ,·········11分 ∴ ,解得 ,··················································13分 ∴ ···········································14分 .········································································15分 18.解:(1)将点代入椭圆方程可得: , ,··························1分 解得: , ,········································································2分 ∴椭圆方程为: ;·································································3分 (2)方法一:设 , , , ∴ , , 由 ,则 ,即 ,··································4分 代入椭圆方程可得: , 整理得: ,····································5分 又 , 在椭圆上,则 , , 代入上式可得: ,平方可得: ,····6分 ∵直线OA的方程为: , ∴点 到直线OA的距离 ,······································7分 ∴△OAB的面积: ,·······8分 第 3 页 共 9 页∴ ,·················9分 ∴△OAB的面积为定值 ;······························································10分 (2)方法二:设 , , , ∴ , , 由 ,则 ,即 ,··································4分 代入椭圆方程可得: , 整理得: ,····································5分 又 , 在椭圆上,则 , , 代入上式可得: , 又 , 在直线 上, 故 ,则 , 整理得到: ……(*)·····························6分 联立方程: ,整理得到: , 由 , 由韦达定理: 代入(*)式,得: ,··············7分 此时: 第 4 页 共 9 页,···························································8分 O(0,0)到直线 的距离: ,·······································9分 所以△OAB的面积: ;·············10分 (3)设 , , , , ∵直线AB与直线DE平行,则直线AB与直线DE的斜率均为 , 由平行关系,可设 ,即 , ,·················11分 由 ,则 , ∴ ,······································································12分 同理,由 可得: , 又 , 在椭圆上,故 , , 相减可得: ,·······························13分 ∴ ,则 ……③····14分 同理: ,则 ……④·15分 ③+④可得: ,················16分 ∴ ,又 ,故m=2n.·······················17分 19.解:(1)证明:由题意,可知 ,·································1分 如解图1,取PE中点H,连接HF,HG, 第 5 页 共 9 页则HF⊥PE,GH⊥PE,结合HF,HG 平面HGF, 故PA⊥平面HGF,···············································································2分 又∵FG 平面HGF,故PA⊥FG; (2)设AC与BD的交点为O, ∵ 平面PAC,平面PAC 平面EBD = EO, 结合PC∥平面EBD,故PC∥EO,····························································4分 ∵E为PA的中点,故O为AC的中点, 如解图2所示,建立空间直角坐标系, 则A(2,0,0),P(0,0,2), , 设 , ,AC 中点 O(1,0, 0), 则有 ,∵ , 故 , 得 ,同理可得 ,··························································5分 不妨设 , ,其中 , , ∵BD过O(1,0,0),从而 , 由 , , 得 ,则 ,··················································6分 设平面PAB与平面PAD的法向量分别为 , , 从而有 ,即 ,可得 , 同理可得 ,·····························································7分 故 第 6 页 共 9 页,······························8分 且易知 ,满足θ为钝角, 而 ,当且仅当 , 时取等, 故 , 二面角B-AP-D的平面角的余弦值的最大值为 ;··································10分 (3)∵BD//FG,且PA⊥FG, 故PA⊥BD,结合PC⊥平面ABD,则可得PC⊥BD, 因此BD⊥平面PAC,故BD⊥AC, 由(2)知 , , 故B,D关于平面PAC对称, 设 , 则 , 其 中 且 , 设△ABD的外心为S,显然S应在x轴上, 设 ,∵|SB|=|SA|, 故有 ,整理得 ,······························12分 同时PA在平面PAC中的垂直平分线恰为CE, 因此球心T即为过S且垂直于平面ABD的直线与CE的交点, 故 ,······························13分 令 ,则 且 ,代入 及 表达式, 得 , 因此 ,令 , 第 7 页 共 9 页故 ,且 ,·····························14分 且给定该球的半径时,三棱锥P-BCD的体积有3个可能的值, 等价于 有3个不同的解,即 有3个不同的解, 时,关于w的方程 , ①当 在区间 上有唯一解, 此时关于v的方程 仅在区间(‒2,0)有一解,不满足题意;·············15分 ②当 时,关于w的方程 恰有两解 , ,方程 在区间(‒2,0)有1解, 有唯一解 .故共 有2组解,不满足题意;···········································································16分 ③当 时,关于w的方程 在 , 分别有一解. 此时关于 v 的方程 在区间(‒2,0)有一解,在 有2解,共3解,符合题意, 因此 ,即 , 综上所述,该球半径的取值范围是 ;······························17分 思路二:令 ,则 且 , 代入 的表达式为: , 则 ,结合 ,后同解法一的讨论. 方法二:(3)∵BD//FG,且PA⊥FG,故PA⊥BD,结合PC⊥平面ABD,则可得 PC⊥BD, 因此BD⊥平面PAC,故BD⊥AC,由(2)知 , , 第 8 页 共 9 页故B,D关于平面 PAC对称,设 ,则 ,其中 且 , 设球心 ,则 , ∴ 化 简 整 理 得 : , 且 , 故 , 下同方法一. 第 9 页 共 9 页