当前位置:首页>文档>2025一2026学年度上期高2028届期末考试数学答案_2024-2025高一(7-7月题库)_2026年1月高一_260128四川省成都市第七中学2025一2026学年度上期高一期末考试(全)

2025一2026学年度上期高2028届期末考试数学答案_2024-2025高一(7-7月题库)_2026年1月高一_260128四川省成都市第七中学2025一2026学年度上期高一期末考试(全)

  • 2026-02-15 12:42:22 2026-02-15 12:42:22

文档预览

2025一2026学年度上期高2028届期末考试数学答案_2024-2025高一(7-7月题库)_2026年1月高一_260128四川省成都市第七中学2025一2026学年度上期高一期末考试(全)
2025一2026学年度上期高2028届期末考试数学答案_2024-2025高一(7-7月题库)_2026年1月高一_260128四川省成都市第七中学2025一2026学年度上期高一期末考试(全)
2025一2026学年度上期高2028届期末考试数学答案_2024-2025高一(7-7月题库)_2026年1月高一_260128四川省成都市第七中学2025一2026学年度上期高一期末考试(全)
2025一2026学年度上期高2028届期末考试数学答案_2024-2025高一(7-7月题库)_2026年1月高一_260128四川省成都市第七中学2025一2026学年度上期高一期末考试(全)

文档信息

文档格式
pdf
文档大小
2.752 MB
文档页数
4 页
上传时间
2026-02-15 12:42:22

文档内容

2025-2026 学年度上期高 2028 届期末考试 数学试卷(答案) 一、选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一项是 符合题目要求的。 1. B 2. C 3. C 4. A 5. A 6. D 7. C 8. D 二、选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每个小题给出的四个选项中,有多个项 是符合题目要求的. 全部选对的得 6 分,部分答对给部分分,有错选得 0 分. 9. AC 10. ABD 11. ABC 三、填空题:本题共 3 小题,每小题 5 分,共 15 分。 5 12. 16 13. 14. 8 4 四、解答题:本大题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤. 15. 解答 √ 3 𝜋 𝜋 (1) 由题知 sin𝜑= , 又 |𝜑|< ,故 𝜑= .⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅2 分 2 2 3 最小正周期:𝑇 =𝜋. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅4 分 𝜋 𝜋 𝜋 𝑘𝜋 对称轴:令 2𝑥+ = +𝑘𝜋,𝑘 ∈Z,得 𝑥= + ,𝑘 ∈Z. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分 3 2 12 2 √ 𝜋 1 3 (2) 𝑔(𝑥)=sin(2𝑥+ )+sin(2𝑥)= sin(2𝑥)+ cos(2𝑥)+sin(2𝑥)⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅9 分 3 2 2 √ 𝜋 = 3sin(2𝑥+ ). ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅11 分 6 𝜋 𝜋 𝜋 单调递增区间:令 − +2𝑘𝜋 <2𝑥+ < +2𝑘𝜋(𝑘 ∈Z), 2 6 2 𝜋 𝜋 可得 𝑥∈(− +𝑘𝜋, +𝑘𝜋),𝑘 ∈Z. 3 6 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 13 分 16. 解答 𝜋 (1) 令 𝑡=sin𝑥, 由 𝑥∈[0, ] 知 𝑡∈[0,1], 𝑦 =𝑓(𝑡)=2𝑡2−4𝑡+1=2(𝑡−1) 2 −1. ⋅⋅⋅⋅4 分 2 当 𝑡=0 时,即 𝑥=0 时,𝑦 =𝑓(sin𝑥) 取最大值,最大值为 1.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅6 分 数学试题第1页(共4页)18. 解答 102𝑥+10−2𝑥+2 102𝑥+10−2𝑥−2 (1) ∀𝑥∈ℝ,[𝑔(𝑥)]2−[𝑓(𝑥)]2 = − =1 . 4 4 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3 分 10𝑥−10−𝑥 102𝑥−1 2 (2) 1𝐹(𝑥)= = =1− .𝐹(𝑥) 定义域为 R ,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅4 分 10𝑥+10−𝑥 102𝑥+1 102𝑥+1 10−𝑥−10𝑥 且 ∀𝑥∈ℝ,𝐹(−𝑥)= =−𝐹(𝑥) ,因此 𝐹(𝑥) 是奇函数.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅6 分 10−𝑥+10𝑥 2 2 2(102𝑥 1 −102𝑥 2) ∀𝑥 <𝑥 ,𝐹(𝑥 )−𝐹(𝑥 )= − = , 1 2 1 2 102𝑥 +1 102𝑥 +1 (102𝑥 +1)(102𝑥 +1) 2 1 1 2 由 102𝑥 1 <102𝑥 2,且 (102𝑥 1 +1)(102𝑥 2 +1)>0, 可得 𝐹(𝑥 1 )<𝐹(𝑥 2 ), 故 𝐹(𝑥) 在定义域 ℝ 上单调递增.故 𝐹(𝑥) 为 ℝ 上的奇函数且为增函数.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅10 分 2由题知 𝑥 =𝑚,𝑚∈Z .⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅11 分 0 1 1 由 𝐹(𝑥) 为奇函数,可得 𝐹 (|𝑥 |)<−𝐹 (ℎ(𝑥 + )−7)=𝐹 (7−ℎ(𝑥 + )). 又有 0 0 2 0 2 1 𝐹(𝑥) 单调递增,则 |𝑥 |<7−ℎ(𝑥 + ) .⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅13 分 0 0 2 1 当 𝑥 =2𝑘,𝑘 ∈Z 时, ℎ(𝑥 + )=1 ,则 |𝑥 |<6 ,可得 𝑥 =0,±2,±4 ,共 5 个. 0 0 2 0 0 1 当 𝑥 = 2𝑘+1,𝑘 ∈ Z 时, ℎ(𝑥 + ) = −1 ,则 |𝑥 | < 8 ,可得 𝑥 = ±1,±3,±5,±7 , 0 0 2 0 0 共 8 个. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅16 分 综上,满足条件的 𝑥 的个数为 13 个.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅17 分 0 19. 解答 𝜋 (1) 函数 𝑦 =−𝑥2+2𝑥 在区间 (0,1) 上有 𝑀 性质,函数 𝑦 =sin𝑥 在区间 (0, ) 上没有 𝑀 2 性质. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅4 分 𝑒2𝑥+𝑘 >0 (2) 根据题意,即 ln(𝑒2𝑥+𝑘)−ln(𝑘+1)>𝑥,∀𝑥∈(0,1) 恒成立. 考虑 { 对任 𝑘+1>0 意 𝑥∈(0,1) 恒成立,所以 𝑘 >−1 .⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅6 分 由 ln(𝑒2𝑥+𝑘)>ln(𝑘+1)+𝑥=ln(𝑘+1)+ln𝑒𝑥 =ln((𝑘+1)𝑒𝑥) , 根据对数函数单调性,则 𝑒2𝑥+𝑘 >(𝑘+1)𝑒𝑥 . 令 𝑒𝑥 =𝑡∈(1,𝑒), 考虑一元二次不等式 𝑡2−(𝑘+1)𝑡+𝑘 >0 恒成立,故 (𝑡−𝑘)(𝑡−1)>0 ,即 𝑡>𝑘 恒成 立,所以 𝑘 的取值范围为 (−1,1].⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅12 分 数学试题第3页(共4页)(3) 1 由(1), ∀𝑥∈(0,1),𝑓(𝑥)>𝑥 ,根据 𝑓(𝑥) 在 (0,1) 上单调递增,且值域为 (0,1) ,得 𝑓(𝑓(𝑥))>𝑓(𝑥)>𝑥. 再次使用单调性, 得 𝑓(𝑓(𝑓(𝑥))) > 𝑓(𝑓(𝑥)) > 𝑓(𝑥) > 𝑥, 所以 𝑦 = 𝑓(𝑓(𝑓(𝑥))) 在 (0,1) 上 具有 𝑀 性质.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅14 分 2 根据题意 𝐴 𝐵 = (0,1). 若 𝑥 ∈ 𝐵 ,则 𝑔(𝑥) = 𝑓(𝑥) > 𝑥 ,取 𝑦 ∈ (𝑥,𝑓(𝑥)) . 若 𝑦 ∉𝐵, 则 𝑦 ∈𝐴 ,所以 𝑔(𝑦)=𝑦 <𝑓(𝑥)=𝑔(𝑥), 但 𝑦 >𝑥 ,这与 𝑔(𝑥) 是增函数矛盾.故 [𝑥,𝑔(𝑥)] 𝐵. 当 𝑥 ∈𝐵,𝑔(𝑥 )=𝑓(𝑥 ) ,故 0 0 0 0<𝑥 <𝑔(𝑥 )<1 0 0 再根据 𝑔(𝑥) 的单调性,则 0<𝑔(𝑥 )<𝑔(𝑔(𝑥 ))<1 . 0 0 记 𝑥 = 𝑔(𝑥 ) = −𝑥2+2𝑥 ∈ (0,1),𝑥 = 𝑔(𝑥 ) = −𝑥2+2𝑥 ∈ (0,1),⋯,𝑥 = 𝑔(𝑥 ) = 1 0 0 0 2 1 1 1 𝑛 𝑛−1 −𝑥2 +2𝑥 ,⋯⋯ 𝑛−1 𝑛−1 所以 [𝑥 ,𝑥 ] 𝐵 ,同理 [𝑥 ,𝑥 ] 𝐵,⋯,[𝑥 ,𝑥 ] 𝐵⋯ 0 1 1 2 𝑛−1 𝑛 由于 1−𝑥 =1+𝑥2 −2𝑥 =(1−𝑥 ) 2 , 𝑛 𝑛−1 𝑛−1 𝑛−1 所以 1−𝑥 =(1−𝑥 ) 2 =(1−𝑥 ) 22 =⋯=(1−𝑥 ) 2𝑛 . 𝑛 𝑛−1 𝑛−2 0 1 1 2026 取 𝑥 = , 故取自然数 𝑛⩾log log (1−(1−( ) ))=log 2026. 0 2 2 1 2 2 2 1 2026 1 1 2026 即 1−( ) ∈[ ,𝑥 ] 𝐵 ,所以 1−( ) 属于 𝐵. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅17 分 2 2 𝑛 2 数学试题第4页(共4页)