当前位置:首页>文档>河池十校联体2024-10月考高一数学答案_2024-2025高一(7-7月题库)_2024年11月试卷_1107广西河池十校高一联考2024-2025学年10月考

河池十校联体2024-10月考高一数学答案_2024-2025高一(7-7月题库)_2024年11月试卷_1107广西河池十校高一联考2024-2025学年10月考

  • 2026-02-16 02:07:37 2026-02-16 02:07:37

文档预览

河池十校联体2024-10月考高一数学答案_2024-2025高一(7-7月题库)_2024年11月试卷_1107广西河池十校高一联考2024-2025学年10月考
河池十校联体2024-10月考高一数学答案_2024-2025高一(7-7月题库)_2024年11月试卷_1107广西河池十校高一联考2024-2025学年10月考
河池十校联体2024-10月考高一数学答案_2024-2025高一(7-7月题库)_2024年11月试卷_1107广西河池十校高一联考2024-2025学年10月考
河池十校联体2024-10月考高一数学答案_2024-2025高一(7-7月题库)_2024年11月试卷_1107广西河池十校高一联考2024-2025学年10月考

文档信息

文档格式
pdf
文档大小
1.293 MB
文档页数
4 页
上传时间
2026-02-16 02:07:37

文档内容

2024 年秋季学期高一年级校联体第一次联考 数学参考答案 1.【答案】C 【详解】由全称命题的否定可知,命题“xR, x x2 1”的否定是“x R, x x2 1”. 0 0 0 故选:C. 2.【答案】B 【详解】因为B x|2x2 ,故AB1,1  ,故选:B. 3.【答案】C 1 x30 【详解】函数 f(x) x3 有意义,则 ,解得x3, 1x 1x0 所以原函数的定义域为[3,). 故选:C. 4.【答案】D 【详解】因为A0,1,所以集合A有,0,1,0,1共4个子集. 故选:D. 5.【答案】B 1x (1x)(1x)0 【详解】不等式 0等价于 ,解之得1x<1. 1x  1x0 故选:B. 6.【答案】A 【详解】 f x为奇函数可以推出 f 00, 但是 f 00推不出 f x为奇函数, 因此“ f 00”是“ f x是定义在R上的奇函数”的必要不充分条件. 故选:A. 7.【答案】A m 【详解】因为 在,2 上单调递减,所以对称轴 2,即m4. 2 故选:A. ( ) 8.【答案】B 【详解】解:由题意可知a0时,不等式显然不恒成立, 所以当a0,由不等式ax2xa0对所有的实数x都成立, a0 1 可得 ,解得a . 0 2 故选:B. 9.【答案】AD 1 【详解】函数yx2是非奇非偶函数,yx 是(,0)(0,)上的奇函数,BC不是; x 函数yx22,y x 1均为偶函数.又二次函数y x2 2在0,上为单调递增. y x 1,当x0时,函数可化为yx1,在0,上为单调递增,AD正确. 故选:AD. 10.【答案】BC 【详解】对于A:若c0,则ac2 bc2 0,故A错误; 数学参考答案 第1 页 共4页 学习资料,无偿分享 {#{QQABaQCEggCoABAAAQgCQQliCEOQkhACAQgOwAAEMAAACBFABAA=}#}对于B:若ab4,则a2b2 2ab8,当且仅当ab2时,等号成立,故B正确; 对于C:若ab,cd ,则d c,所以ad bc,故C正确; 1 1 对于D:当b  a  0时,则  ,故D错误. b a 故选:BC. 11.【答案】ACD 【详解】对于A项,分式中分母不等于0,所以x10,解得:x1. 所以 f x的定义域是,1  1,;故A项正确; 对于B项,多个单调区间可用逗号(或“和”)隔开,所以 f x在,1,1,上单调递减,在 ,1  1,上不是单调递减的,故B项错误; 2 2 2 对于C项, f x1 ,令g(x) ,定义域为(,0)(0,),g(x) g(x) 所以g(x)是奇函数, x x x 即 f x1是奇函数,故C项正确; 对于D项, f x的值域是(,0)(0,),故D项正确. 故选:ACD. 12.【答案】1 【详解】 f  2   2  6  6   1 , f  f  2   f 1 1 2 1. 2 故答案为:1. 13.【答案】 2 【详解】函数y x2 2x3的图象是开口向上,且以直线x  1 为对称轴的抛物线, 当x1,3时,y x2 2x3单调递增,在x1时取得最小值2. 故答案为:2. 14.【答案】6 ab 2 ab 2 【详解】a,b0,ab  ,ab3   2   2  ab2 4(ab)120,  (ab)6  (ab)2 0, ab60,ab6,当且仅当ab时,等式成立 即ab最小值为6 故答案为:6 15.【答案】(1)由Ax|x4,Bx|6x6得ABx|4 x6,················4分 ABx|x6 ······················································································4分(8分) (2)由Bx|6x6得C B={x|x<-6或x>6},··········································2分 U 故A∩(C B)={x|x>6}···················································································3分(13分) U 16.【答案】(1)∵x1,即x10,·······························································1分 1 1 1 4x 4x1 42 4x1 4448,·····························3分 x1 x1 x1 1 3 当且仅当 4x1,即 x  时取等号,··················································2分 x1 2 1 ∴4x 的最小值为8.············································································1分(7分) x1 (2)由题可得B是A的真子集,·······································································1分 当B,则m12m1m2;························································· 2分(10分) 数学参考答案 第2 页 共4页 学习资料,无偿分享 {#{QQABaQCEggCoABAAAQgCQQliCEOQkhACAQgOwAAEMAAACBFABAA=}#}2m17 当B,m≥2,则 (等号不同时成立),解得2m4;·············3分 m12 综上,m4.··························································································2分(15分) 17.【答案】(1)由题意作出函数图象如图所示. ············································································3分 x2 2x,x0 根据图象得函数f  x  ··················································.4分(7分) x2 2x,x0 (2)由图可知,单调递减区间为,1,1,.················································· 4分(11分) (3)由图可知,使 f x0的x的取值集合为x|0 x 2或x2 .·······················4分(15分) 18.【答案】(1)因为公司一年购买某种货物600吨,每次购买x吨, 600 所以购买货物的次数为 ,····································································1分 x 600 3600 故y 64x 4x260,x0,···················································5分 x x 化简得x265x9000,x0,解得20x45,··········································2分 所以x的取值范围为x|20x45 .···························································1分(9分) 3600 (2)由(1)可知y 4x,x0,······························································1分 x 3600 3600 因为 4x2 4x 240,··························································· 3分(13分) x x 3600 当且仅当 4x即x30时等号成立,···················································2分 x 所以当x30时,一年的总费用最小, 故x的值为30.························································································2分(17分) 19.【答案】(1)令x y0可得: f(0) f(0) f(0),故 f(0)0,·························3分 (2)令yx可得: f(0) f(x) f(x),故 f(x)f(x) .···································3分 又函数 f(x)的定义域是R, 故函数 f(x)为奇函数.············································································1分(7分) (3)先证明: f x在R上为增函数 证明:设任意x,x R,且x x ,则 1 2 1 2 f x 1  f x 2  f   x 1 x 2 x 2    f x 2  f x 1 x 2  f x 2  f x 2  ····················3分  f x x  1 2 又当x0时, f x0,x x 0f  x x 0,·····································1分 1 2 1 2 fxfx 0,f x  f x ,···························································1分 1 2 1 2 即 f x在R上为增函数.···········································································1分(13分) 由(2)可知,函数 f(x)为R上的奇函数, 数学参考答案 第3 页 共4页 学习资料,无偿分享 {#{QQABaQCEggCoABAAAQgCQQliCEOQkhACAQgOwAAEMAAACBFABAA=}#}因为 f(x2) f  x22x  0. 所以 f(x2)f  x22x   f  2xx2 .····················································1分 所以x22xx2,················································································1分 解得x1或x2,·················································································1分 故 x x1或x2  ··················································································1分(17分) 数学参考答案 第4 页 共4页 学习资料,无偿分享 {#{QQABaQCEggCoABAAAQgCQQliCEOQkhACAQgOwAAEMAAACBFABAA=}#}