文档内容
2023~2024 学年度第一学期期中学业水平诊断
高三数学参考答案
一、选择题:
1.B 2. A 3. D 4.A 5.D 6.A 7.C 8.C
二、选择题
9.ACD 10.AB 11.BC 12.BCD
三、填空题
13. 14. 15. 16.
四、解答题
17.解:(1)由题知, ,所以, ,所以, .················2分
所以, . ····························································3分
所以, ,即 ,·················4分
故 的单调递增区间为 .·································5分
(2)将函数 图像上所有点横坐标伸长到原来的 倍(纵坐标不变),得
,再向右平移 个单位长度,得 .···············6分
所以
,····································8分
因为 , ,所以 , 时, 取得最大值
为 .···························································································10分
高三数学试题答案 第 1 页(共 9 页)
学学科科网网((北北京京))股股份份有有限限公公司司18.解:(1)当 时, ,则 或 ,
因为 ,所以 ;·································································2分
当 时, ,两式相减得, ,
,因为 ,所以 ,即 ,······4分
即
故数列 是以 为首项, 为公差的等差数列.····································5分
(2)由(1)知, ,
····························································7分
所以 ,
························10分
所以, .························································12分
19.解:(1)由题知,每年的追加投入是以 为首项, 为公比的等比数列,
所以, ;···············································3分
高三数学试题答案 第 2 页(共 9 页)
学学科科网网((北北京京))股股份份有有限限公公司司同理,每年牧草收入是以 为首项, 为公比的等比数列,
所以, .·················································6分
(2)设至少经过 年,牧草总收入超过追加总投入,即 ,
即 ,············8分
令 ,则上式化为 ,
即 ,················································································9分
解得 ,即 ,所以, ,
即 ,所以 .··························11分
所以,至少经过 年,牧草总收入超过追加总投入.·····································12分
20. 解:若选①:(1)由正弦定理得, ,··············1分
因为 ,所以 ,
即 ,又因为 , ,·······················3分
所以 .···············································································4分
高三数学试题答案 第 3 页(共 9 页)
学学科科网网((北北京京))股股份份有有限限公公司司(2)在 中, ,则 ,
.············6分
因为 是锐角三角形,所以 ,即 ,即 ,
所以 ,
所以 ,····································································7分
所以 .···············································································8分
设 ,则 ,
令 , ,则 ,
令 ,则 ,
则 在 上单调递减,在 上单调递增,···································10分
所以 ,即 的取值范围为 .···························12分
,所以 ,
若选②:(1)因为
············································1分
所以 ,
所以 ,
所以 .······························································3分
高三数学试题答案 第 4 页(共 9 页)
学学科科网网((北北京京))股股份份有有限限公公司司又 ,解得 或 (舍),
所以 .···············································································4分
(2)在 中, ,则 ,
,··········6分
因 为 是 锐 角 三 角 形 , 所 以 , 即 , 即
,
所以 ,
所以 ,····································································7分
所以 .···············································································8分
设 ,则 ,
令 , ,则 ,
令 ,则 ,
则 在 上单调递减,在 上单调递增,···································10分
所以 ,即 的取值范围为 .···························12分
高三数学试题答案 第 5 页(共 9 页)
学学科科网网((北北京京))股股份份有有限限公公司司若选③:(1)由正弦定理得, ,···1分
因为 ,所以 ,
所以 ,
所以 . ···································3分
又因为 , ,所以 ,
又 ,解得 .···············································4分
(2)在 中, ,则 ,
,··········6分
因 为 是 锐 角 三 角 形 , 所 以 , 即 , 即
,
所以 ,
所以 ,····································································7分
所以 .···············································································8分
设 ,则 ,
令 , ,则 ,
高三数学试题答案 第 6 页(共 9 页)
学学科科网网((北北京京))股股份份有有限限公公司司令 ,则 ,
则 在 上单调递减,在 上单调递增,···································10分
所以 ,即 的取值范围为 .···························12分
21.解:(1)由题知, ,···········································1分
所以,当 时, 恒成立,所以,令 ,解得 .
所以,当 时, , 在 上单调递减;
当 时, , 在 上单调递增;·················3分
当 时,令 ,解得 或 ,
所以,当 ,即 时, 时, , 在 上
单调递减,当 时, , 在 和
上单调递增;······················································································4分
当 ,即 时, 时, , 在 上单
调递减,当 时, , 在 和 上
单调递增;·························································································5分
当 时, 在 上恒成立,
所以, 在 上单调递增.·····················································6分
(2)由(1)知,当 时, 在 上单调递减,在 和 上
单调递增,且当 时, ,当 时, ,所以,若方
程 始 终 有 三 个 不 相 等 的 实 根 , 则 , 即
在 上恒成立.········································8分
高三数学试题答案 第 7 页(共 9 页)
学学科科网网((北北京京))股股份份有有限限公公司司当 时,显然 .····························································9分
令 ,则 ,因为 ,所以, ,所以,
恒成立,所以, 在 上单调递减,所以,
.···············································································11分
综上,若方程 始终有三个不相等的实根,
的取值范围为 .·····························································12分
22.解:(1)由题得, ,··································1分
令 ,则函数 有两个极值点,即方程 有两个正
实数根.································································································2分
因为 ,所以当 时, , 单调递减,当
时, , 单调递增,所以, ,且当 时,
, 时, .···················································4分
所以,方程 有两个正实数根,只需 ,
解得 ,····················································································5分
即函数 有两个极值点时, 的范围为 .·································6分
(2)若 且 ,则令 ,由(1)知, ,
高三数学试题答案 第 8 页(共 9 页)
学学科科网网((北北京京))股股份份有有限限公公司司即 ,则 ,
即 ,解得, ,所以, .····················8分
所以, ,··················9分
令 ,则
,···························10分
令 ,则
所以函数 在 上单调递增,且 ,所以, ,···········11分
所以,当 时, ,所以, 在 上单调递增,
所以,当 时, .
即 的最大值为 .··················································12分
高三数学试题答案 第 9 页(共 9 页)
学学科科网网((北北京京))股股份份有有限限公公司司