当前位置:首页>文档>青岛市2024届一模物理答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)物理_青岛市2024届一模物理试题

青岛市2024届一模物理答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)物理_青岛市2024届一模物理试题

  • 2026-02-22 04:29:00 2026-02-22 03:56:57

文档预览

青岛市2024届一模物理答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)物理_青岛市2024届一模物理试题
青岛市2024届一模物理答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)物理_青岛市2024届一模物理试题
青岛市2024届一模物理答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)物理_青岛市2024届一模物理试题
青岛市2024届一模物理答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)物理_青岛市2024届一模物理试题

文档信息

文档格式
pdf
文档大小
0.269 MB
文档页数
4 页
上传时间
2026-02-22 03:56:57

文档内容

2024 年高三年级第一次适应性检测 物理答案及评分标准 一、单项选择题:本题共8小题,每小题3分,共24分。 1.B 2.C 3.A 4.D 5.D 6.C 7.B 8.C 二、多项选择题:本题共4小题,每小题4分,共16分。 9.AD 10.BC 11.AD 12.ABC 三、非选择题:本题共6小题,共60分。 Ld(t -t ) 1 2 13.(6分) (1)12.9(2分); (2)0.4(2分); (3) (2分)。 ght t 12 14.(8分) (1)78.9(2分); (2)37.6(2分); 1500 1.5 (3)I= (2分)(写成I= 得1分); 157.6+0.38t 157.6+0.38t (4)不变(2分)。 15.(7分) (1)充气过程中气囊克服外界大气压强所做的功W=p V··································(2分) 0 3 PV' PV 5 (2)对气囊内所有的气体由理想气体状态方程得 = ···························(2分) T T 3 1 从气囊内排出气体的体积为 ΔV=V'-V···············································(1分) 3 Δm ΔV 2 排出气体质量与排气前气体总质量的之比为 = = ·························· (2分) m V' 5 评分标准:第1问,2分;第2问,5分。共7分。 16.(9 分) (1)设出水口处水的速度为v,由题意可得ΔV=svt ········································(1分) 解得v=1m/s ···················································································(1分) 1 平抛过程:竖直方向h= gt2 ································································(1分) 2 水平方向x=v t=0.3m·····················································(2分) 0 (2)取水质量m=ρΔV=0.8kg································································(1分) 1 根据能量守恒定律 mv2+mgh=ηPt····················································(2分) 2 P=1.5W····················································································(1分) 评分标准:第1问,5分;第2问,4分。共9 分。 高三物理答案 第1页(共5页) {#{QQABJYqEogggQBBAAQgCEwFqCgCQkBECCAoORBAMsAAACAFABCA=}#}17.(14分) (1)由题意可知粒子在电场区域做类斜抛运动轨迹如图 qEsinθ 沿分界线方向vcosα- t=0··················································· (1分) m qEcosθt 垂直分界线方向vsinα- =0··················································· (1分) m 2 3 解得tanα= ············································································(1分) 2 (2)如图,设粒子沿边界线方向的位移为 d 1 qEsinθ 0-(v cosα)2=-2 d ·······························(1分) 0 1 m m(v sinα)2 由qvB sinα= 0 ································(1分) 1 r 要垂直穿过x轴,那么需要做圆周运动的半径r =d 1 1 3mE 解得B = ···············································································(1分) 1 4qr (3)设粒子圆周运动的半径R ,粒子再次经过分界线时到O点距离为d , 1 2 根据几何关系(d -R )sinθ=R ······························································· (1分) 1 1 1 8mv 2 由图可知d =2R = 0 ·····································································(2分) 2 1 21qE (4)第三次穿过分界线的粒子速度依然为v 0 mv 所以在B 中的半径为R = 0······························································(1分) 2 2 qB 2 要想轨迹中心在y轴上,根据几何关系d cosθ=R cosβ····························· (1分) 2 2 π cosβ=cos( -θ-α) 2 (1+sinθ)E 可得 (tanα+tanθ) ····································································(1分) v cosα 0 5 21E 代入数据B = ,方向垂直纸面向里···············································(2分) 2 8v 0 评分标准:第1问,3 分;第2问,3 分;第3问,3 分;第4问,5 分。共14 分。 高三物理答案 第2页(共5页) {#{QQABJYqEogggQBBAAQgCEwFqCgCQkBECCAoORBAMsAAACAFABCA=}#}18.(16分) 1 (1)根据机械能守恒,小球摆到最低点时的速度为v 0 满足 mv 0 2=mgH 2 解得v = 2gH=10 2m/s···································································· (1分) 0 A碰B时,根据动量守恒mv =m v ·······················································(1分) 0 0 1 v m 恢复系数为e= 1 解得e= ·····························································(1分) v m 0 0 B碰A时根据动量守恒为m v =m v '+mv·······························································(1分) 0 0 0 0 v-v ' 恢复系数e'= 0 ·············································································(1分) v 0 联立得v=v =10 2m/s·······································································(1分) 0 (2)设共速时速度为v ,共速的位置距离小车左端距离为, 共 根据动量守恒mv =(M+m)v ·································································(1分) 0 共 m 1 解得v = v = v =5 2m/s····························································· (1分) 共 M+m 0 2 0 根据能量守恒可得μmgL+F 1 L+F 2 (x-L)+μmg(x-L)=ΔE k0 ································(1分) 1 1 m MmgH 其中ΔE = mv 2- v 2= =100J··············································(1分) k0 2 0 2M+m 共 M+m 5MH 1 253 可得x= + L>L 代入数据可得x= ≈4.22m···························(1分) 6(M+m) 2 60 (3)当m再次返回到小车左端的时候,具有的可损失动能为 ΔE k1 =ΔE k0 -μmg(x+x)·········································································(1分) MmgH 得ΔE k1 = -0.4mgL 3(M+m) MmgH 1 将 代换回ΔE k0 得ΔE k1 = ΔE k0 -0.4mgL M+m 3 1 其中0.4mgL=0.8J,所以ΔE k1 = ΔE k0 -0.8 3 因为每次从左侧挡板出发都会经过类似的过程,所以递推关系为 1 ΔE k(n+1) = ΔE kn -0.8·················································································(1分) 3 以下列举每次数量关系 1 n=1时,ΔE k1 = ΔE k0 -0.8 3 高三物理答案 第3页(共5页) {#{QQABJYqEogggQBBAAQgCEwFqCgCQkBECCAoORBAMsAAACAFABCA=}#}1 1 n=2时,ΔE k2 = ΔE k0 -0.8× -0.8 32 3 1 1 1 n=3时,ΔE k3 = ΔE k0 -0.8× -0.8× -0.8 33 32 3 …… 1 1 1 n=n时,ΔE kn = ΔE k0 -0.8×( +… +1) 3n 3n-1 3 1 1.2 结合数列求和得ΔE kn = ΔE k0 -(1.2- )····················································(1分) 3n 3n 101.2 由ΔE =100J,整理得ΔE = -1.2 k0 kn 3n 101.2 4 可知当n=4时,ΔE = -1.2= J k4 34 81 假设此后m相对小车向右运动过程中会停在小车上的L段,设停在x 4 位置处 根据功能关系ΔE =(F +f)x ·································································(1分) k4 1 4 1 带入数据得:x = m≈4mm 4 243 因为x ≈4mm<0.1m=L,所以假设正确, 4 综上 1 m物块一共跟左侧挡板碰撞4次,最后停在距离左端x = m≈4mm的位置·(1分) 4 243 评分标准:第1问,6分;第2问,5分;第3问,5分。共16分。 高三物理答案 第4页(共5页) {#{QQABJYqEogggQBBAAQgCEwFqCgCQkBECCAoORBAMsAAACAFABCA=}#}