当前位置:首页>文档>数学文_2024年4月_01按日期_21号_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-文科数学

数学文_2024年4月_01按日期_21号_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-文科数学

  • 2026-02-22 06:45:15 2026-02-22 05:37:08

文档预览

数学文_2024年4月_01按日期_21号_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-文科数学
数学文_2024年4月_01按日期_21号_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-文科数学
数学文_2024年4月_01按日期_21号_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-文科数学
数学文_2024年4月_01按日期_21号_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-文科数学
数学文_2024年4月_01按日期_21号_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-文科数学
数学文_2024年4月_01按日期_21号_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-文科数学
数学文_2024年4月_01按日期_21号_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-文科数学

文档信息

文档格式
docx
文档大小
0.278 MB
文档页数
7 页
上传时间
2026-02-22 05:37:08

文档内容

绵阳市高中2021级第三次诊断性考试 文科数学参考答案及评分意见 一、选择题:本大题共12小题,每小题5分,共60分. CDACC ACCBD CA 二、填空题:本大题共4小题,每小题5分,共20分. 13.2 14. 15. 16. 三、解答题:本大题共6小题,共70分. 17.解:(1)①当 时, ,则 .································1分 ②当 时,由 ,得 ,······························2分 两式相减,得 ,·······················································3分 ,即 ,··················································4分 ∴ ∴数列 是以 为首项, 为公比的等比数列,························5分 ∴ .·········································································6分 (2)由(1)得 ,······························8分 可知数列 是以 为首项,4为公比的等比数列,····························9分 ∴ ······································································10分 ········································································11分 .(也可不计算到此步)·····································12分 18.解:(1)调试前,电池的平均放电时间为: 2.5×0.02×5+7.5×0.06×5+12.5×0.08×5+17.5×0.04×5=11小时,···················4分 调试后的合格率为:0.1×5+0.06×5=0.8,则 ,·······················5分 ∴a=48;·····················································································6分 数学(文科)评分标准 第 1 页 共 7 页(2)由列联表可计算 ,·················10分 ∴有95%的把握认为参数调试能够改变产品合格率.··························12分 19.解:(1)∵E是BP的中点,AB=AP, ∴AE⊥PB,·················································································1分 又平面PAB∩平面PBC=PB,且平面PAB⊥平面PBC, ∴AE⊥平面PBC,·········································································2分 过D作DF⊥PC交PC于F, ∵平面PCD⊥平面PBC,且平面PCD∩平面PBC=PC, ∴DF⊥平面PBC,········································································4分 ∴AE∥DF,·················································································5分 又DF 平面PCD,AE 平面PCD, ∴AE∥平面PCD;········································································6分 (2)∵AD∥BC ∴V =V =V =V , C-PBD D-PBC A-PBC C-PAB ∴V =V = S ·d,·······························································8分 C-PBD C-PAB △ABP 又∵平面PBC⊥平面PAB,过C作CH⊥PB交PB于H, ∴CH⊥平面PAB,·········································································9分 在直角△CHB中: ,·····················10分 ∴ ,·································11分 ∴当sin∠BAP=1时,体积的最大值为 .········································12分 数学(文科)评分标准 第 2 页 共 7 页20.解:(1)解:当 时, ,·······················1分 a=1 ,··········································································2分 此时切线斜率为: ;····························································3分 所以曲线 在(e, )处的切线方程: ···············4分 即: ;····························································5分 (2)证明方法一:因为 ,·································6分 由 得到x>a;由 得到0a;由 得到0b>0,所以a−b=2, ②·······················································4分 数学(文科)评分标准 第 6 页 共 7 页由①②得: a=3,b=1 ;··································································5分 √3−at+√bt=√3−3t+√t=√3√1−t+√t (2) ,·································6分 π √t=sinθ,0≤θ≤ 令 2 ,则 √1−t=cosθ ,··········································7分 π √3√1−t+√t=√3cosθ+sinθ=2sin(θ+ ) ∴ 3 ,··································9分 π 1 θ= t= ∴当 6 时,即 4 时, √3−at+√bt 的最大值为2.·····················10分 数学(文科)评分标准 第 7 页 共 7 页