当前位置:首页>文档>2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年

2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年

  • 2026-02-22 06:52:02 2026-02-22 05:44:04

文档预览

2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年
2023年陕西省中考数学试卷(A卷)_中考真题_2.数学中考真题2015-2024年

文档信息

文档格式
docx
文档大小
2.812 MB
文档页数
27 页
上传时间
2026-02-22 05:44:04

文档内容

2023年陕西省中考数学试卷(A卷) 一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的) 1.(3分)计算:3﹣5=( ) A.2 B.﹣2 C.8 D.﹣8 2.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D. 3.(3分)如图,l∥AB,∠A=2∠B.若∠1=108°,则∠2的度数为( ) A.36° B.46° C.72° D.82° 4.(3分)计算:( ) A.3x4y5 B.﹣3x4y5 C.3x3y6 D.﹣3x3y6 5.(3分)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是( ) A. 第1页(共27页)B. C. D. 6.(3分)如图,DE是△ABC的中位线,点F在DB上,DF=2BF.连接EF并延长,与CB的延长线相 交于点M.若BC=6,则线段CM的长为( ) A. B.7 C. D.8 7.(3分)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个 “老碗”(图①)的形状示意图.是 O的一部分,D是的中点,连接OD,与弦AB交于点C,连接 OA,OB.已知AB=24cm,碗深CD=⊙8cm,则 O的半径OA为( ) ⊙ 第2页(共27页)A.13cm B.16cm C.17cm D.26cm 8.(3分)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对 称轴在y轴左侧,则该二次函数有( ) A.最大值5 B.最大值 C.最小值5 D.最小值 二、填空题(共5小题,每小题3分,计15分) 9.(3分)如图,在数轴上,点A表示,点B与点A位于原点的两侧,且与原点的距离相等.则点B表 示的数是 . 10.(3 分)如图,正八边形的边长为 2,对角线 AB、CD 相交于点 E.则线段 BE 的长为 . 11.(3分)点E是菱形ABCD的对称中心,∠B=56°,连接AE,则∠BAE的度数为 . 12.(3分)如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上, 点D在边BC上,BC=2CD,AB=3.若点B,E在同一个反比例函数的图象上,则这个反比例函数的 表达式是 . 第3页(共27页)13.(3分)如图,在矩形ABCD中,AB=3,BC=4.点E在边AD上,且ED=3,M、N分别是边 AB、BC上的动点,且BM=BN,P是线段CE上的动点,连接PM,PN.若PM+PN=4.则线段PC 的长为 . 三、解答题(共13小题,计81分.解答应写出过程) 14.(5分)解不等式:x. 15.(5分)计算:. 16.(5分)化简:(). 17.(5分)如图.已知锐角△ABC,∠B=48°,请用尺规作图法,在△ABC内部求作一点P.使PB= PC.且∠PBC=24°.(保留作图痕迹,不写作法) 18.(5分)如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点 D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB. 19.(5分)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是 1,1,2,3. 第4页(共27页)这些小球除标有的数字外都相同. (1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是 1 的概率为 ; (2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小 球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积 是偶数的概率. 20.(5分)小红在一家文具店买了一种大笔记本 4个和一种小笔记本6个,共用了62元.已知她买的 这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价. 21.(6分)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高 AB.如图所示,当小明爸爸站在点D处时,他在该景观灯照射下的影子长为DF,测得DF=2.4m;当 小明站在爸爸影子的顶端F处时,测得点A的仰角 为26.6°.已知爸爸的身高CD=1.8m,小明眼睛 到地面的距离EF=1.6m,点F、D、B在同一条直线α上,EF⊥FB,CD⊥FB,AB⊥FB.求该景观灯的 高AB.(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50) 22.(7分)经验表明,树在一定的成长阶段,其胸径(树的主干在地面以上1.3m处的直径)越大,树 就越高.通过对某种树进行测量研究,发现这种树的树高y(m)是其胸径x(m)的一次函数.已知 这种树的胸径为0.2m时,树高为20m;这种树的胸径为0.28m时,树高为22m. (1)求y与x之间的函数表达式; (2)当这种树的胸径为0.3m时,其树高是多少? 23.(7分)某校数学兴趣小组的同学们从“校园农场”中随机抽取了 20棵西红柿植株,并统计了每棵 植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54, 54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表: 分组 频数 组内小西红柿的总个数 25≤x<35 1 28 35≤x<45 n 154 45≤x<55 9 452 55≤x<65 6 366 根据以上信息,解答下列问题: 第5页(共27页)(1)补全频数分布直方图:这20个数据的众数是 ; (2)求这20个数据的平均数; (3)“校园农场”中共有300棵这种西红柿植株,请估计这300棵西红柿植株上小西红柿的总个数. 24.(8分)如图,△ABC内接于 O,∠BAC=45°,过点B作BC的垂线,交 O于点D,并与CA的 延长线交于点E,作BF⊥AC,垂⊙足为M,交 O于点F. ⊙ (1)求证:BD=BC; ⊙ (2)若 O的半径r=3,BE=6,求线段BF的长. ⊙ 25.(8分)某校想将新建图书楼的正门设计为一个抛物线型拱门,并要求所设计的拱门的跨度与拱高之 积为48m2,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这 两个方案中的拱门图形放入平面直角坐标系中,如图所示: 方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN. 方案二,抛物线型拱门的跨度 ON′=8m,拱高 P'E'=6m.其中,点 N′在 x 轴上, P′E′⊥O′N′,OE′=E′N′. 要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框 架ABCD的面积记为S ,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积 1 记为S ,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,, 2 请你根据以上提供的相关信息,解答下列问题: 第6页(共27页)(1)求方案一中抛物线的函数表达式; (2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S 并比较S ,S 的大小. 1 1 2 26.(10分)(1)如图①,在△OAB中,OA=OB,∠AOB=120°,AB=24.若 O的半径为4,点P 在 O上,点M在AB上,连接PM,求线段PM的最小值; ⊙ (⊙2)如图②所示,五边形ABCDE是某市工业新区的外环路,新区管委会在点B处,点E处是该市的 一个交通枢纽.已知:∠A=∠ABC=∠AED=90°,AB=AE=10000m,BC=DE=6000m.根据新区 的自然环境及实际需求,现要在矩形AFDE区域内(含边界)修一个半径为30m的圆型环道 O;过 圆心O,作OM⊥AB,垂足为M,与 O交于点N.连接BN,点P在 O上,连接EP.其中⊙,线段 BN、EP及MN是要修的三条道路,要⊙在所修道路BN、EP之和最短的情⊙况下,使所修道路MN最短, 试求此时环道 O的圆心O到AB的距离OM的长. ⊙ 第7页(共27页)2023年陕西省中考数学试卷(A卷) 参考答案与试题解析 题号 1 2 3 4 5 6 7 8 答案 B C A B D C A D 一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的) 1.(3分)计算:3﹣5=( ) A.2 B.﹣2 C.8 D.﹣8 【分析】先根据有理数的减法法则计算即可. 【解答】解:3﹣5=﹣2. 故选:B. 【点评】本题主要考查了有理数的减法法则,熟知:减去一个数,等于加上这个数的相反数. 2.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D. 【分析】根据轴对称图形和中心对称图形的定义,逐项判断即可求解. 【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意; B、不是轴对称图形,是中心对称图形,不符合题意; C、是轴对称图形,也是中心对称图形,符合题意; D、不是轴对称图形,也不是中心对称图形,不符合题意. 故选:C. 【点评】本题考查了轴对称图形和中心对称图形的识别,掌握好中心对称图形与轴对称图形的概念. 轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转 180度后两部分重合. 3.(3分)如图,l∥AB,∠A=2∠B.若∠1=108°,则∠2的度数为( ) 第8页(共27页)A.36° B.46° C.72° D.82° 【分析】由对顶角相等可得∠3=∠1=108°,再由平行线的性质可求得∠A=72°,∠B=∠2,结合已 知条件可求得∠B,即可求解. 【解答】解:如图, ∵∠1=108°, ∴∠3=∠1=108°, ∵l∥AB, ∴∠3+∠A=180°,∠2=∠B, ∴∠A=180°﹣∠3=72°, ∵∠A=2∠B, ∴∠B=36°, ∴∠2=36°. 故选:A. 【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等; 两直线平行,同旁内角互补. 4.(3分)计算:( ) A.3x4y5 B.﹣3x4y5 C.3x3y6 D.﹣3x3y6 【分析】利用单项式乘单项式的法则进行运算即可. 【解答】解: =6×()x1+3y2+3 =﹣3x4y5. 故选:B. 第9页(共27页)【点评】本题主要考查单项式乘单项式,解答的关键是对相应的运算法则的掌握. 5.(3分)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是( ) A. B. C. D. 【分析】根据正比例函数和一次函数的性质,可以得到函数y=ax和y=x+a的图象经过哪几个象限, 本题得以解决. 【解答】解:∵a<0, ∴函数y=ax是经过原点的直线,经过第二、四象限, 函数y=x+a是经过第一、三、四象限的直线, 故选:D. 第10页(共27页)【点评】本题考查正比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用正比例函 数和一次函数的性质解答. 6.(3分)如图,DE是△ABC的中位线,点F在DB上,DF=2BF.连接EF并延长,与CB的延长线相 交于点M.若BC=6,则线段CM的长为( ) A. B.7 C. D.8 【分析】根据三角形中中位线定理证得DE∥BC,求出DE,进而证得△DEF∽BMF,根据相似三角形 的性质求出BM,即可求出结论. 【解答】解:∵DE是△ABC的中位线, ∴DE∥BC,DEBC6=3, ∴△DEF∽△BMF, ∴2, ∴BM, CM=BC+BM. 故选:C. 【点评】本题主要考查了三角形中位线定理,相似三角形的性质和判定,熟练掌握三角形中位线定理 和相似三角形的判定方法是解决问题的关键. 7.(3分)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个 “老碗”(图①)的形状示意图.是 O的一部分,D是的中点,连接OD,与弦AB交于点C,连接 OA,OB.已知AB=24cm,碗深CD=⊙8cm,则 O的半径OA为( ) ⊙ 第11页(共27页)A.13cm B.16cm C.17cm D.26cm 【分析】首先利用垂径定理的推论得出OD⊥AB,AC=BCAB=12cm,再设 O的半径OA为R cm, 则OC=(R﹣8)cm.在Rt△OAC中根据勾股定理列出方程R2=122+(R﹣8⊙)2,求出R即可. 【解答】解:∵是 O的一部分,D是的中点,AB=24cm, ∴OD⊥AB,AC=B⊙CAB=12cm. 设 O的半径OA为R cm,则OC=OD﹣CD=(R﹣8)cm. 在⊙Rt△OAC中,∵∠OCA=90°, ∴OA2=AC2+OC2, ∴R2=122+(R﹣8)2, ∴R=13, 即 O的半径OA为13cm. 故⊙选:A. 【点评】本题考查了垂径定理、勾股定理的应用,设 O的半径OA为R cm,列出关于R的方程是解 题的关键. ⊙ 8.(3分)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对 称轴在y轴左侧,则该二次函数有( ) A.最大值5 B.最大值 C.最小值5 D.最小值 【分析】将(0,6)代入二次函数解析式,进而得出m的值,再利用对称轴在y轴左侧,得出m=3, 再利用公式法求出二次函数最值. 【解答】解:由题意可得:6=m2﹣m, 解得:m =3,m =﹣2, 1 2 ∵二次函数y=x2+mx+m2﹣m,对称轴在y轴左侧, ∴m>0, ∴m=3, ∴y=x2+3x+6, ∴二次函数有最小值为:. 第12页(共27页)故选:D. 【点评】此题主要考查了二次函数的性质以及二次函数的最值,正确得出m的值是解题关键. 二、填空题(共5小题,每小题3分,计15分) 9.(3分)如图,在数轴上,点A表示,点B与点A位于原点的两侧,且与原点的距离相等.则点B表 示的数是 . 【分析】根据原点左边的数是负数,由绝对值的定义可得答案. 【解答】解:由题意得:点B表示的数是. 故答案为:. 【点评】此题考查了数轴,绝对值,掌握绝对值的意义是解本题的关键. 10.(3分)如图,正八边形的边长为2,对角线AB、CD相交于点E.则线段BE的长为 2 . 【分析】根据正八边形的性质得出四边形CEGF是矩形,△ACE、△BFG是等腰直角三角形,AC=CF =FB=EG=2,再根据矩形的性质以及直角三角形的边角关系求出AE,GE,BG即可. 【解答】解:如图,过点F作FG⊥AB于G,由题意可知,四边形CEGF是矩形,△ACE、△BFG是 等腰直角三角形,AC=CF=FB=EG=2, 在Rt△ACE中,AC=2,AE=CE, ∴AE=CEAC, 同理BG, ∴BE=EG+BG=2, 故答案为:2. 第13页(共27页)【点评】本题考查正多边形和圆,掌握正八边形的性质以及直角三角形的边角关系是正确解答的前提. 11.(3分)点E是菱形ABCD的对称中心,∠B=56°,连接AE,则∠BAE的度数为 62 ° . 【分析】连接BE,根据中心对称图形的定义得出点E是菱形ABCD的两对角线的交点,根据菱形的性 质得出AE⊥BE,∠ABE∠ABC=28°,那么∠BAE=90°﹣∠ABE=62°. 【解答】解:如图,连接BE, ∵点E是菱形ABCD的对称中心,∠ABC=56°, ∴点E是菱形ABCD的两对角线的交点, ∴AE⊥BE,∠ABE∠ABC=28°, ∴∠BAE=90°﹣∠ABE=62°. 故答案为:62°. 【点评】本题考查了菱形的性质,菱形是中心对称图形,两对角线的交点是对称中心,掌握菱形的两 条对角线互相垂直平分,并且每一条对角线平分一组对角是解题的关键. 12.(3分)如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上, 点D在边BC上,BC=2CD,AB=3.若点B,E在同一个反比例函数的图象上,则这个反比例函数的 表达式是 y . 【分析】根据矩形的性质得到OC=AB=3,根据正方形的性质得到CD=CF=EF,设CD=m,BC= 2m,得到B(3,2m),E(3+m,m),设反比例函数的表达式为y,列方程即可得到结论. 【解答】解:∵四边形OABC是矩形, ∴OC=AB=3, ∵四边形CDEF是正方形, 第14页(共27页)∴CD=CF=EF, ∵BC=2CD, ∴设CD=m,BC=2m, ∴B(3,2m),E(3+m,m), 设反比例函数的表达式为y, ∴3×2m=(3+m)•m, 解得m=3或m=0(不合题意舍去), ∴B(3,6), ∴k=3×6=18, ∴这个反比例函数的表达式是y, 故答案为:y. 【点评】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征:反比例函 数y(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k. 13.(3分)如图,在矩形ABCD中,AB=3,BC=4.点E在边AD上,且ED=3,M、N分别是边 AB、BC上的动点,且BM=BN,P是线段CE上的动点,连接PM,PN.若PM+PN=4.则线段PC 的长为 2 . 【分析】过点P分别作PF⊥DC,PG⊥BC,PH⊥AB,由题意知PG=PF,再说明PM与PH重合,PN 与PG重合,得出四边形MPNB为正方形,即可求出PC=2. 【解答】解:如图,过点P分别作PF⊥DC,PG⊥BC,PH⊥AB, 第15页(共27页)∵DE=CD=3,∠D=90°, ∴∠ECD=45°, ∴∠ECB=45°, ∴PG=PF, ∵PM≥PH,PN≥PG, ∴PM+PN≥PH+PG=4, ∵PM+PN=4, ∴PM与PH重合,PN与PG重合, ∴四边形PHBG为正方形, ∴PH=PG=2, ∴PC=2. 故答案为:2. 【点评】本题考查矩形的性质和等腰直角三角形的性质,作出适当的辅助线是解题关键. 三、解答题(共13小题,计81分.解答应写出过程) 14.(5分)解不等式:x. 【分析】去分母,移项,合并同类项,系数化成1即可. 【解答】解:x, 去分母,得3x﹣5>4x, 移项,得3x﹣4x>5, 合并同类项,得﹣x>5, 不等式的两边都除以﹣1,得x<﹣5. 【点评】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键. 15.(5分)计算:. 【分析】直接利用二次根式的乘法运算法则以及负整数指数幂的性质、绝对值的性质分别化简,进而 得出答案. 【解答】解:原式=﹣57+|﹣8| =﹣51. 第16页(共27页)【点评】此题主要考查了实数的运算,正确化简各数是解题关键. 16.(5分)化简:(). 【分析】先算括号里的运算,把除法转为乘法,最后约分即可. 【解答】解:() . 【点评】本题主要考查分式的混合运算,解答的关键是对相应的运算法则的掌握. 17.(5分)如图.已知锐角△ABC,∠B=48°,请用尺规作图法,在△ABC内部求作一点P.使PB= PC.且∠PBC=24°.(保留作图痕迹,不写作法) 【分析】先作∠ABC的平分线BD,再作BC的垂直平分线l,直线l交BD于P点,则P点满足条件. 【解答】解:如图,点P即为所求. 【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图 形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质. 18.(5分)如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点 D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB. 【分析】利用三角形内角和定理得∠CAB的度数,再根据全等三角形的判定与性质可得结论. 【解答】证明:在△ABC 中,∠B=50°,∠C=20°, 第17页(共27页)∴∠CAB=180°﹣∠B﹣∠C=110°. ∵AE⊥BC. ∴∠AEC=90°. ∴∠DAF=∠AEC+∠C=110°, ∴∠DAF=∠CAB. 在△DAF和△CAB中, , ∴△DAF≌△CAB(SAS). ∴DF=CB. 【点评】此题考查的是全等三角形的判定与性质,掌握其性质定理是解决此题的关键. 19.(5分)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是 1,1,2,3. 这些小球除标有的数字外都相同. (1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为 ; (2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小 球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积 是偶数的概率. 【分析】(1)根据题意和题目中的数据,可以计算出从袋中机摸出一个小球,则摸出的这个小球上标 有的数字是1的概率; (2)根据题意可以画出相应的树状图,然后即可求出摸出的这两个小球上标有的数字之积是偶数的概 率. 【解答】解:(1)由题意可得, 从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为, 故答案为:; (2)树状图如下: 由上可得,一共有16种等可能性,其中两数之积是偶数的可能性有7种, 第18页(共27页)∴摸出的这两个小球上标有的数字之积是偶数的概率. 【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,画出相应的树状图, 求出相应的概率. 20.(5分)小红在一家文具店买了一种大笔记本 4个和一种小笔记本6个,共用了62元.已知她买的 这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价. 【分析】设该文具店中这种大笔记本的单价是x元,根据买了一种大笔记本4个和一种小笔记本6个, 共用了62元,得4x+6(x﹣3)=62,即可解得答案. 【解答】解:设该文具店中这种大笔记本的单价是x元,则小笔记本的单价是(x﹣3)元, ∵买了一种大笔记本4个和一种小笔记本6个,共用了62元, ∴4x+6(x﹣3)=62, 解得:x=8; 答:该文具店中这种大笔记本的单价为8元. 【点评】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系,列出方程解决问题. 21.(6分)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高 AB.如图所示,当小明爸爸站在点D处时,他在该景观灯照射下的影子长为DF,测得DF=2.4m;当 小明站在爸爸影子的顶端F处时,测得点A的仰角 为26.6°.已知爸爸的身高CD=1.8m,小明眼睛 到地面的距离EF=1.6m,点F、D、B在同一条直线α上,EF⊥FB,CD⊥FB,AB⊥FB.求该景观灯的 高AB.(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50) 【分析】过点E作EH⊥AB,垂足为H,根据题意可得:EH=FB,EF=BH=1.6m,然后设EH=FB= x m,在Rt△AEH中,利用锐角三角函数的定义求出AH的长,从而求出AB的长,再根据垂直定义可 得∠CDF=∠ABF=90°,从而证明A字模型相似三角形△CDF∽△ABF,最后利用相似三角形的性质 可得ABx,从而列出关于x的方程,进行计算即可解答. 【解答】解:过点E作EH⊥AB,垂足为H, 第19页(共27页)由题意得:EH=FB,EF=BH=1.6m, 设EH=FB=x m, 在Rt△AEH中,∠AEH=26.6°, ∴AH=EH•tan26.6°≈0.5x(m), ∴AB=AH+BH=(0.5x+1.6)m, ∵CD⊥FB,AB⊥FB, ∴∠CDF=∠ABF=90°, ∵∠CFD=∠AFB, ∴△CDF∽△ABF, ∴, ∴, ∴ABx, ∴x=0.5x+1.6, 解得:x=6.4, ∴ABx=4.8(m), ∴该景观灯的高AB约为4.8m. 【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,相似三角形的应用,平行投影,根据题目 的已知条件并结合图形添加适当的辅助线是解题的关键. 22.(7分)经验表明,树在一定的成长阶段,其胸径(树的主干在地面以上1.3m处的直径)越大,树 就越高.通过对某种树进行测量研究,发现这种树的树高y(m)是其胸径x(m)的一次函数.已知 这种树的胸径为0.2m时,树高为20m;这种树的胸径为0.28m时,树高为22m. (1)求y与x之间的函数表达式; (2)当这种树的胸径为0.3m时,其树高是多少? 【分析】(1)设y=kx+b(k≠0),利用待定系数法解答即可; (2)把x=0.3代入(1)的结论解答即可. 【解答】解:(1)设y=kx+b(k≠0), 根据题意,得, 第20页(共27页)解之,得, ∴y=25x+15; (2)当x=0.3时,y=25×0.3+15=22.5(m). ∴当这种树的胸径为0.3m时,其树高为22.5m. 【点评】此题考查一次函数的实际运用,掌握待定系数法求函数解析式的方法与步骤是解决问题的关 键. 23.(7分)某校数学兴趣小组的同学们从“校园农场”中随机抽取了 20棵西红柿植株,并统计了每棵 植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54, 54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表: 分组 频数 组内小西红柿的总个数 25≤x<35 1 28 35≤x<45 n 154 45≤x<55 9 452 55≤x<65 6 366 根据以上信息,解答下列问题: (1)补全频数分布直方图:这20个数据的众数是 5 4 ; (2)求这20个数据的平均数; (3)“校园农场”中共有300棵这种西红柿植株,请估计这300棵西红柿植株上小西红柿的总个数. 【分析】(1)用总数减去其它三组的频数可得n的值,进而补全频数分布直方图,然后根据众数的定 义解答即可; (2)根据算术平均数的计算公式解答即可; (3)用300乘(2)的结论可得答案. 【解答】解:(1)由题意得,n=20﹣1﹣9﹣6=4, 补全频数分布直方图如下 第21页(共27页)这20个数据中,54出现的次数最多,故众数为54. 故答案为:54; (2). ∴这20个数据的平均数是50; (3)所求总个数:50×300=15000(个). ∴估计这300棵西红柿植株上小西红柿的总个数是15000个. 【点评】本题主要考查了频数分布直方图、频数分布表,用样本估计总体,众数以及加权平均数,解 决此题的关键是明确频率=频数÷总数. 24.(8分)如图,△ABC内接于 O,∠BAC=45°,过点B作BC的垂线,交 O于点D,并与CA的 延长线交于点E,作BF⊥AC,垂⊙足为M,交 O于点F. ⊙ (1)求证:BD=BC; ⊙ (2)若 O的半径r=3,BE=6,求线段BF的长. ⊙ 【分析】(1)如图,连接 DC,根据圆周角定理得到∠BDC=∠BAC=45°,求得∠BCD=90°﹣ ∠BDC=45°,根据等腰三角形的判定定理即可得到结论; (2)如图,根据圆周角定理得到CD为 O的直径,求得CD=2r=6.根据勾股定理得到EC3,根据 相似三角形的判定和性质定理即可得到结⊙论. 【解答】(1)证明:如图,连接DC, 第22页(共27页)则∠BDC=∠BAC=45°, ∵BD⊥BC, ∴∠DBC=90°, ∴∠BCD=90°﹣∠BDC=45°, ∴∠BCD=∠BDC. ∴BD=BC; (2)解:如图,∵∠DBC=90°, ∴CD为 O的直径, ∴CD=2⊙r=6. ∴BC=CD•sin3, ∴EC3, ∵BF⊥AC, ∴∠BMC=∠EBC=90°,∠BCM=∠BCM, ∴△BCM∽△ECB. ∴, ∴BM2,CM, 连接CF,则∠F=∠BDC=45°,∠MCF=45°, ∴MF=MC, ∴BF=BM+MF=2. 【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的判定和性质,相似三角 形的判定和性质,正确地作出辅助线是解题的关键. 25.(8分)某校想将新建图书楼的正门设计为一个抛物线型拱门,并要求所设计的拱门的跨度与拱高之 积为48m2,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这 两个方案中的拱门图形放入平面直角坐标系中,如图所示: 方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN. 第23页(共27页)方案二,抛物线型拱门的跨度 ON′=8m,拱高 P'E'=6m.其中,点 N′在 x 轴上, P′E′⊥O′N′,OE′=E′N′. 要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框 架ABCD的面积记为S ,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积 1 记为S ,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,, 2 请你根据以上提供的相关信息,解答下列问题: (1)求方案一中抛物线的函数表达式; (2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S 并比较S ,S 的大小. 1 1 2 【分析】(1)由题意知抛物线的顶点P(6,4),设顶点式用待定系数法可得方案一中抛物线的函数 表达式为yx2x; (2)令y=3可得x=3或x=9,故BC=6(m),S =AB•BC=18(m2);再比较S ,S 的大小即可. 1 1 2 【解答】解:(1)由题意知,方案一中抛物线的顶点P(6,4), 设抛物线的函数表达式为y=a(x﹣6)2+4, 把O(0,0)代入得:0=a(0﹣6)2+4, 解得:a, ∴y(x﹣6)2+4x2x; ∴方案一中抛物线的函数表达式为yx2x; (2)在yx2x中,令y=3得:3x2x; 解得x=3或x=9, ∴BC=9﹣3=6(m), ∴S =AB•BC=3×6=18(m2); 1 ∵18>12, ∴S >S . 1 2 【点评】本题考查二次函数的应用,解题的关键是读懂题意,求出函数关系式. 第24页(共27页)26.(10分)(1)如图①,在△OAB中,OA=OB,∠AOB=120°,AB=24.若 O的半径为4,点P 在 O上,点M在AB上,连接PM,求线段PM的最小值; ⊙ (⊙2)如图②所示,五边形ABCDE是某市工业新区的外环路,新区管委会在点B处,点E处是该市的 一个交通枢纽.已知:∠A=∠ABC=∠AED=90°,AB=AE=10000m,BC=DE=6000m.根据新区 的自然环境及实际需求,现要在矩形AFDE区域内(含边界)修一个半径为30m的圆型环道 O;过 圆心O,作OM⊥AB,垂足为M,与 O交于点N.连接BN,点P在 O上,连接EP.其中⊙,线段 BN、EP及MN是要修的三条道路,要⊙在所修道路BN、EP之和最短的情⊙况下,使所修道路MN最短, 试求此时环道 O的圆心O到AB的距离OM的长. ⊙ 【分析】(1)连接OP,OM,过点O作OM'⊥AB,垂足为M',则PM≥OM﹣4≥OM'﹣4,由直角三 角形的性质得出OM'=AM'•tan30°=4,则可得出答案; (2)分别在BC,AE上作BB'=AA'=r=30(m),连接A'B',B'O、OP、OE、B′E.证出四边形 BB'ON是平行四边形.由平行四边形的性质得出BN=B′O.当点O在B'E上时,BN+PE取得最小值. 作 O',使圆心O'在B'E上,半径r=30(m),作O'M'⊥AB,垂足为M',并与A'B'交于点H.证明 △B⊙'O'H∽△B'EA',由相似三角形的性质得出,求出O'H的长可得出答案. 【解答】解:(1)如图①,连接OP,OM,过点O作OM'⊥AB,垂足为M', 则 OP+PM≥OM. 第25页(共27页)∵ O半径为4, ∴⊙PM≥OM﹣4≥OM'﹣4, ∵OA=OB.∠AOB=120°, ∴∠A=30°, ∴OM'=AM'•tan30°=12tan30°=4, ∴PM≥OM'﹣4=44, ∴线段PM的最小值为44; (2)如图②,分别在BC,AE上作BB'=AA'=r=30(m), 连接A'B',B'O、OP、OE、B′E. ∵OM⊥AB,BB'⊥AB,ON=BB', ∴四边形BB'ON是平行四边形. ∴BN=B′O. ∵B'O+OP+PE≥B'O+OE≥B'E, ∴BN+PE≥B'E﹣r, ∴当点O在B'E上时,BN+PE取得最小值. 作 O',使圆心O'在B'E上,半径r=30(m), 作⊙O'M'⊥AB,垂足为M',并与A'B'交于点H. ∴O'H∥A'E, ∴△B'O'H∽△B'EA', ∴, ∵ O'在矩形AFDE区域内(含边界), ∴⊙当 O'与FD相切时,B′H最短,即B′H=10000﹣6000+30=4030(m). 此时⊙,O′H也最短. 第26页(共27页)∵M'N'=O'H, ∴M'N'也最短. ∴O'H4017.91(m), ∴O'M'=O'H+30=4047.91(m), ∴此时环道 O的圆心O到AB的距离OM的长为4047.91m. 【点评】本⊙题是圆的综合题,考查了等腰三角形的性质,切线的性质,平行四边形的判定与性质,相 似三角形的判定与性质,解直角三角形,熟练掌握以上知识是解题的关键. 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2025/1/12 21:58:29;用户:庞俊梅;邮箱:18715777852;学号:54801167 第27页(共27页)