文档内容
吉林省2019年初中毕业生学业水平考试数学试题
数学试题共6题,包括六道大题,共26道小题。全卷满分120分,考试时间为120分钟。考试结束
后,将本试卷和答题卡一并交回。
注意事项:
1.答题前,请您将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。
2.答题时,请您按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题上答题无效。
一、单项选择题(每小题2分,共12分)
1.如图,数轴上蝴蝶所在点表示的数可能为( )
0
(第1题)
A.3 B.2 C.1 D.-1
2.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为( )
正面
(第2题)
A. B. C. D.
3.若a为实数,则下列各式的运算结果比a小的是( )
A.a1 B.a1 C.a1 D.a1
4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为( )
A.30° B.90° C.120° D.180°
A
C
O
曲桥
B
A P B
(第4题) (第5题) (第6题)
5.如图,在⊙O中,AB所对的圆周角∠ACB=50°,若P为AB上一点,∠AOP=55°,则∠POB的度数为
( )
A.30° B.45° C.55° D.60°
6. 曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏
风光。如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是(
)
A.两点之间,线段最短 B.平行于同一条直线的两条直线平行
C.垂线段最短 D.两点确定一条直线
二、填空题(每小题3分,共24分)
17.分解因式:a2 1________.
8.不等式3x21的解集是________.
y x
9.计算: ________.
2x2 y
10.若关于x的一元二次方程 有实数根,则c的值可以为________(写出一个即可).
x32 c
11.如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则
∠B=________°.
E D B
B
A C
E E
C
B C D A
O D A
(第11题) (第12题) (第14题)
12.如图,在四边形ABCD中,AB=10,BD⊥AD.若将△BCD沿BD折叠,点C与边AB的中点E恰好重合,则
四边形BCDE的周长为________.
13.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时同地测得一栋楼的影长为90m,则这栋
楼的高度为________m.
14.如图,在扇形OAB中,∠AOB=90°,D,E分别是半径OA,OB上的点,以OD,OE为邻边的□ODCE的顶
点G在AB上,若OD=8,OE=6,则阴影部分图形的面积是________(结果保留π).
三、解答题(每小题5分,共20分)
15.先化简,再求值: ,其中 .
a12 aa2
a 2
16.甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有红色、绿色两
条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇子,从乙口袋中随机取出
一条手绢,用画树状图或列表的方法,求取出的扇子和手绢都是红色的概率.
甲口袋
乙口袋
(第16题)
17.已知y是x的反比例函数,并且当x2时,y6.
⑴求y关于x的函数解析式;
⑵当x4时,求y的值.
18.如图,在□ABCD中,点E在边AD上,以C为圆心,AE长为半径画弧,交边BC于点F,连接BE、DF.求
证:△ABE≌△CDF.
2A E D
B F C
(第18题)
四、解答题(每小题7分,共28分)
19.图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB,在
图②中已画出线段CD,其中A、B、C、D均为格点,按下列要求画图:
⑴在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;
⑵在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD=90°
20.问题解决
糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每
根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?
山楂有多少个?
(第20题)
反思归纳
现有a根竹签,b个山楂.若每根竹签串c个山楂,还剩余d个山楂,则下列等式成立的是________
(填写序号).
⑴bc+d=a;⑵ac+d=b;⑶ac-d=b.
21.墙壁及淋浴花洒截面如图所示,已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,
与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离CE(结果精确到1cm)(参考数据:
3sin43°=0.68,cos43°=0.73,tan43°=0.93)
D C
A
170
B E
(第21题)
22.某地区有城区居民和农村居民共80万人,某机构准备采用抽取样本的方法调查该地区居民“获
取信息的最主要途径”.
⑴该机构设计了以下三种调查方案:
方案一:随机抽取部分城区居民进行调查;
方案二:随机抽取部分农村居民进行调查;
方案三:随机抽取部分城区居民和部分农村居民进行调查.
其中最具有代表性的一个方案是________;
⑵该机构采用了最具有代表性的调查方案进行调查.供选择的选项有:电脑、手机、电视、广播,其他,
共五个选项,每位被调查居民只选择一个选项.现根据调查结果绘制如下统计图,请根据统计图回答
下列问题:
①这次接受调查的居民人数为________人;
②统计图中人数最多的选项为________;
③请你估计该地区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数.
五、解答题(每小题8分,共16分)
23.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B
地,乙车立即以原速原路返回到B地,甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之
间的关系如图所示.
⑴m=________,n=________;
⑵求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;
⑶当甲车到达B地时,求乙车距B地的路程
424.性质探究
如图①,在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为________.
E
C
H
A B F G
图① 图②
(第24题)
理解运用
⑴若顶角为120°的等腰三角形的周长为 ,则它的面积为________;
84 3
⑵如图②,在四边形EFGH中,EF=EG=EH.
①求证:∠EFG+∠EHG=∠FGH;
②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=10,直接写出线段MN的长.
类比拓展
顶角为2α的等腰三角形的底边与一腰的长度之比为________(用含α的式子表示).
六、解答题(每小题10分,共20分)
25.如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE=AB,连接AE.动点P、Q从点A同时出
发,点P以 cm/s的速度沿AE向终点E运动;点Q以2cm/s的速度沿折线AD—DC向终点C运
2
动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积
为y(cm²).
⑴AE=________cm,∠EAD=________°;
⑵求y关于x的函数解析式,并写出自变量x的取值范围;
5
⑶当PQ= cm时,直接写出x的值.
4
5C E B C E B
P
D Q A D A
(第25题) (备用图)
26.如图,抛物线 与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C(0,-
yx12 k
3).P为抛物线上一点,横坐标为m,且m>0.
⑴求此抛物线的解析式;
⑵当点P位于x轴下方时,求△ABP面积的最大值;
⑶设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.
①求h关于m的函数解析式,并写出自变量m的取值范围;
②当h=9时,直接写出△BCP的面积.
6参考答案
1、D 2、D 3、B 4、C 5、B 6、A
1
7、(a1)(a1) 8、x>1 9、 10、5(答案不唯一,只有c≥0即可)
2x
11、60 12、20 13、54 14、25-48
15、解:原式=a2 2a1a2 2a2a2 1,
当 时,原式=5
a 2
16、解:画树状图如下:
共有4种可能结果,其中取出的扇子和手绢都是红色的有1种可能,
1
所以,所求的概率为:P=
4
17、解:(1)y是x的反例函数,
k
所以,设y (k 0),
x
当x2时,y6.
所以, ,
k xy 12
12
所以,y
x
(2)当x=4时,y=3
18、证明:AE=FC,
在平行四边形ABCD中,AB=DC,∠A=∠C
在△ABE和△CDF中,
AE CF
AC
ABCD
所以,△ABE≌△CDF(SAS)
19、(1)(2)如下图所示
789101112