文档内容
保密★使用
前
泉州市 2024 届高中毕业班质量监测(一)
2023.08
数 学
【解答题部分】
本试卷共22题,满分 150分,共 8页。考试用时120分钟。
四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。
17.(10分)
a
数列 a 中,a 1,且a n .
n 1 n1 a 1
n
(1)求
a
的通项公式;
n
2n
(2)令b ,记数列 b 的前n项和为S ,求S .
n a n n 8
n
【命题意图】本小题主要考查等差数列的定义、通项公式与数列求和等基础知识,考查运算
求解能力,考查函数与方程、化归与转化等思想,体现基础性,导向对发展数
学运算等核心素养的关注.
【试题解析】解法一:
a 1 1
(1) 由a n ,可得 1.····················································1分
n1 a 1 a a
n n1 n
1
因为a 1,所以 1.···································································2分
1 a
1
1
所以数列{ }是首项为1,公差为1的等差数列.··································· 3分
a
n
1 1
所以 n,即a .····································································4分
a n n
n
2n
(2) 因为b ,所以b n2n.····························································5分
n a n
n
又S b b b ,
n 1 2 n
所以S 21222 828①.·······················································6分
8
①式两边同乘以2,得2S 22 2238281②,·························· 7分
8
②-①,得S (222 2328)829,······································8分
8
高三数学试题 第1页(共24页)2(128)
所以S 829 2729 3586.····································10分
8 12
解法二:
a
(1) 由a n ,可得a a a a .
n1 a 1 n1 n n1 n
n
1 1 1 1
两边同除以a a ,得1 ,即 1.····························· 1分
n1 n a a a a
n n1 n1 n
1
因为a 1,所以 1.·································································· 2分
1 a
1
1
所以数列{ }是首项为1,公差为1的等差数列.··································3分
a
n
1 1
所以 n,即a .···································································4分
a n n
n
2n
(2) 因为b ,所以b n2n.····························································5分
n a n
n
所以b 2,b 8,b 24,b 64,b 160,b 384,b 896,b 2048,·······9分
1 2 3 4 5 6 7 8
所以S b b b 2824641603848962048 3586.······10分
8 1 2 8
高三数学试题 第2页(共24页)18.(12分)
泉州是历史文化名城、东亚文化之都,是联合国认定的“海上丝绸之路”起点.著名的
“泉州十八景”是游客的争相打卡点,泉州文旅局调查打卡十八景游客,发现 90%的人至少
打卡两个景点.为提升城市形象,泉州文旅局为大家准备了 4 种礼物,分别是世遗泉州金属
书签、闽南古厝徽章、开元寺祈福香包、小关公陶瓷摆件.若打卡十八景游客至少打卡两个
景点,则有两次抽奖机会;若只打卡一个景点,则有一次抽奖机会.每次抽奖可随机获得 4
种礼物中的1种礼物.假设打卡十八景游客打卡景点情况相互独立.
(1)从全体打卡十八景游客中随机抽取3人,求3人抽奖总次数不低于4次的概率;
(2)任选一位打卡十八景游客,求此游客抽中开元寺祈福香包的概率.
【命题意图】本小题主要考查离散型随机变量的分布列、条件概率、全概率公式等基础知识;
考查运算求解、推理论证能力等;考查化归与转化思想等.体现基础性、应用
性和综合性,导向对发展数学运算、数学抽象等核心素养的关注.
【试题解析】解法一:
(1) 设3人抽奖总次数为X ,则X 的可能取值为3,4,5,6.··························· 1分
9
由题意知,每位打卡十八景游客至少打卡两个景点的概率为 ,
10
1
只打卡一个景点的概率为 .··························································2分
10
9 1 27
依题可得P(X 4)C1 ( )2 ,···········································3分
3 10 10 1000
9 1 243
P(X 5)C2( )2 ,···········································4分
3 10 10 1000
9 729
P(X 6)( )3 ,···················································· 5分
10 1000
27243729
所以P(X 4) P(X 4)P(X 5)P(X 6) 0.999.
1000
····································································································6分
(2) 记事件A“每位打卡十八景游客至少打卡两个景点”,
则 A“每位打卡十八景游客只打卡一个景点”,
事件B“一位打卡十八景游客抽中开元寺祈福香包”,······················· 7分
9 1 3 7 1
则P(A) ,P(A) ,P(B| A)1( )2 ,P(B| A) ,··········· 9分
10 10 4 16 4
高三数学试题 第3页(共24页)则P(B) P(AB AB) P(AB)P(AB)
P(A)P(B| A)P(A)P(B| A)
9 7 1 1 67
.·····················································12分
10 16 10 4 160
解法二:
(1)设3人抽奖总次数为X ,则X 的可能取值为3,4,5,6.····························1分
9
由题意知,每位打卡十八景游客至少打卡两个景点的概率为 ,
10
1
只打卡一个景点的概率为 .··························································2分
10
9 1 1
依题可得P(X 3)C0( )0( )3 ,······································5分
3 10 10 1000
1 999
所以P(X≥4)1P(X 3)1( )3 0.999.····························6分
10 1000
(2) 同解法一.··················································································12分
解法三:
(1)设3人抽奖总次数为X ,设抽取的 3 位打卡十八景游客中至少打卡两个景点的
人数为Y ,则X 2Y 3Y 3Y ,················································1分
由题可知,Y ~ B 3,0.9 ,······························································· 4分
1
故P(X 4) P(3Y 4) P(Y 1)1P(Y 0)1( )3 0.999.··········6分
10
(2) 同解法一.··················································································12分
高三数学试题 第4页(共24页)19.(12分)
△ABC的内角A,B,C所对的边分别为a,b,c,且满足ccosB(b2a)cosC 0.
(1)求C ;
(2)若CD平分ACB ,且AD2DB,CD 2,求△ABC的面积.
【命题意图】本小题主要考查解三角形、三角恒等变换等基础知识,考查推理论证、运算求
解等能力,考查数形结合和化归与转化等思想,体现综合性与应用性,导向对
发展直观想象、逻辑推理及数学运算等核心素养的关注.
【试题解析】解法一:
(1)因为ccosB(b2a)cosC 0,
所以由正弦定理,可得sinCcosB(sinB2sinA)cosC 0,·················· 1分
即sinCcosBsinBcosC2sinAcosC 0,sin(BC)2sinAcosC 0,···2分
所以sinA2sinAcosC 0,···························································· 3分
1
又sin A0,所以cosC ,·························································4分
2
2
因为C(0,,所以C .··························································5分
3
2 1
(2) 因为AD2DB,所以CD CB CA,···········································6分
3 3
2
4
2
1
2
4
两边平方,得CD CB CA CBCA,····································7分
9 9 9
即4a2 b2 2ab36①.································································· 8分
b AD
又因为CD平分ACB ,所以 2,即b2a②.························9分
a DB
由①②,解得a 3,b6.····························································· 10分
1 2 9 3
所以S absinC 9sin .··········································· 12分
△ABC
2 3 2
高三数学试题 第5页(共24页)解法二:
a2 c2 b2 a2 b2 c2
(1)在△ABC中,由余弦定理,得cosB ,cosC ,
2ac 2ab
·································································································1分
又因为ccosB(b2a)cosC 0,
a2 c2 b2 a2 b2 c2 a2 b2 c2
所以 0,····································2分
2a 2a b
即a2 b2 c2 ab,······································································ 3分
a2 b2 c2 1
所以cosC ,··························································4分
2ab 2
2
因为C(0,,所以C .··························································5分
3
AD
(2) 在△ABC中,AD2DB,所以 2,···········································6分
DB
b AD
又因为CD平分ACB ,所以 2,即b2a①.························7分
a DB
在△ACD中,由余弦定理,得CA2 CD2 AD2 2CACDcosACD,
4
即b2 4 c2 2b②.····································································8分
9
在△BCD中,由余弦定理,得CD2 CB2 BD2 2CDCBcosDCB,
1
即a2 4 c2 2a③.····································································9分
9
由①②③解得a 3,b6.···························································10分
1 2 9 3
所以S absinC 9sin .··········································· 12分
△ABC
2 3 2
解法三:(1)同解法一.············································································5分
(2) 过D点作DE∥AC交CB于点E .······················································6分
因为ACB 120,且CD平分ACB ,
所以ACD CDE DCE 60,··············································· 7分
所以△CDE 为等边三角形,所以CD CE DE 2.····························8分
DE BE BD 1
又因为 ,所以BC 3,AC 6.···························10分
AC BC BA 3
1 2 9 3
所以S absinC 9sin .··········································· 12分
△ABC
2 3 2
高三数学试题 第6页(共24页)解法四:(1)同解法一.············································································5分
AD
(2) 在△ABC中,AD2DB,所以 2.···········································6分
DB
b AD
又因为CD平分ACB,所以 2.··········································7分
a DB
1 3
如图,以C 为原点建系:C(0,0),B(a,0),A(a, 3a),D( a, a).··8分
3 3
1 3
由CD 2,所以( a)2 ( a)2 4,所以a 3,··································9分
3 3
则b6.····················································································10分
1 2 9 3
所以S absinC 9sin .··········································· 12分
△ABC
2 3 2
高三数学试题 第7页(共24页)20.(12分)
已知函数 f(x)(x2)(aexx).
(1)当a4时,求曲线y f(x)在(0, f(0))处的切线方程;
(2)讨论 f(x)的单调性.
【命题意图】本小题主要考查运用导数求切线方程,判断函数的单调性等基础知识;考查推
理论证、运算求解等能力;考查化归与转化、数形结合等数学思想;体现综合
性、应用性与创新性,导向对发展逻辑推理、数学运算、直观想象等核心素养
的关注.
【试题解析】
(1) 由已知 f(x)(x2)(aexx),
则 f(x)aex xaex(x2)(x2) (x1)(aex2),····························1分
当a4时, f(0)8, f(0)2,·················································· 3分
则曲线y f(x)在(0, f(0))处的切线方程为y82x,即2x y80.·4分
(2) 由(1)知, f(x)(x1)(aex2),
①当a≤0时,aex 20,
当x(,1)时, f(x)0, f(x)在(,1)单调递增;···························5分
当x(1,)时, f(x)0, f(x)在(1,)单调递减;···························6分
2
②当a0时,由 f(x)(x1)(aex2)0,得x 1,x ln ,············ 7分
1 2 a
2
(i)当0a 时,x x ,
1 2
e
2 2
当x(,1)(ln ,)时, f(x)0, f(x)在(,1),(ln ,)单调递增;
a a
···································································································8分
2 2
当x(1,ln )时, f(x)0, f(x)在(1,ln )单调递减;························· 9分
a a
2
(ii)当a 时,x x 1, f(x)≥0, f(x)在R单调递增;··············10分
1 2
e
2
(iii)当a 时,x x ,
1 2
e
2 2
当x(,ln )(1,)时, f(x)0, f(x)在(,ln ),(1,)单调递增;
a a
·································································································11分
高三数学试题 第8页(共24页)2 2
当x(ln ,1)时, f(x)0, f(x)在(ln ,1)单调递减;
a a
综上可得:①当a≤0时, f(x)在(,1)单调递增,在(1,)单调递减;
2 2 2
②当0a 时, f(x)在(,1),(ln ,)单调递增,在(1,ln )单调递减;
e a a
2
③当a 时, f(x)在R单调递增;
e
2 2 2
④当a 时, f(x)在(,ln ),(1,)单调递增,在(ln ,1)单调递减.··· 12分
e a a
高三数学试题 第9页(共24页)21.(12分)
如图,三棱锥P ABC 中,PAPB,PA PB,AB2BC2,平面PAB 平面ABC.
(1)求三棱锥P ABC 的体积的最大值;
(2)求二面角PACB的正弦值的最小值.
【命题意图】本小题主要考查线面垂直的判定定理,面面垂直的性质定理,三棱锥体积,二
面角,三角形面积等基础知识;考查空间想象能力、推理论证及运算求解能力;
考查数形结合思想、化归与转化思想等;体现基础性、综合性与应用性,导向
对发展逻辑推理、数学运算、直观想象等核心素养的关注.
【试题解析】解法一:(1)取AB的中点O,连接PO.
因为PA PB,所以PO AB.························································1分
又因为平面PAB 平面ABC,平面PAB平面ABC AB,PO平面PAB,
所以PO平面ABC.···································································· 2分
因为PAPB,PA PB,AB 2BC 2,
所以PO 1,BC 1.····································································3分
所以三棱锥 PABC 的体积为
1 1 1 1
V S PO ABBCsinABC PO sinABC,··········4分
PABC
3
△ABC
3 2 3
1
因为ABC 0,,所以0sinABC≤1,V
,
PABC
3
当且仅当sinABC 1,即ABC 时,等号成立.
2
1
故三棱锥PABC 的体积的最大值为 .···············································5分
3
(2)由(1)可知PO平面ABC,所以PO AC .······························6分
过O作OD AC于D,连结PD.
高三数学试题 第10页(共24页)因为POOD O ,所以AC 平面POD,·········································7分
又PD平面POD,所以PD AC ,
所以PDO为二面角P ACB的平面角.··········································8分
PO 1
在Rt△PDO中,tanPDO ,············································9分
OD OD
1 1
因为 0OD≤ BC ,当且仅当BC AC 时等号成立.······················10分
2 2
所以tanPDO的最小值为2.··························································11分
2 5
此时sinPDO取得最小值 .
5
2 5
故二面角P ACB的正弦值的最小值为 .··································· 12分
5
解法二:(1)同解法一.············································································5分
(2)由(1)可知PO平面ABC,
以O为坐标原点,向量OB,OP为x轴,z 轴正方向,建立如图所示的空间直角
坐标系Oxyz.则P(0,0,1),A(1,0,0),B(1,0,0),AP(1,0,1).
设C(x ,y ,0)(0 x 2,y ≠0),则 AC (x 1,y ,0) .···························6分
0 0 0 0 0 0
设平面PAC 的法向量为m(x,y,z).
mAP 0, xz 0, x 1
则
即
取x 1,则m (1, 0 ,1).·······7分
mAC 0, x
0
1 x y
0
y 0, y
0
又平面ABC的法向量为n(0,0,1).··················································8分
设二面角P ACB的大小为, 0,.
|mn| 1
cos
所以 |m||n| x 1 2 .················································9分
2 0
y
0
因为BC 1,所以 x 1 2 y 2 1,·················································10分
0 0
高三数学试题 第11页(共24页) x 1 2 x 1 2
令t 0 t 0 ,则t 0 ,
y 1 x 1 2
0 0
整理可得 t1 x 2 22t x 10,
0 0
所以 22t 2 4 t1 ≥0,解得t≥3.···········································11分
1 3 5
所以当t 3,即x ,y 时,cos取得最大值 ,
0 2 0 2 5
2 5
此时sin取得最小值 .
5
2 5
故二面角P ACB的正弦值的最小值为 .···································12分
5
解法三:(1)同解法一.············································································5分
(2)由(1)可知 PO平面
ABC
,
以B为坐标原点,向量
BA
为y轴正方向,建立如图所示的空间直角坐标系·····
Oxyz.则P(0,1,1),A(0,2,0),B(0,0,0),AP(0,1,1).
设C(x ,y ,0)(1 x 1,y ≠0),则AC (x ,y 2,0).··························6分
0 0 0 0 0 0
设平面PAC 的法向量为m(x,y,z).
mAP 0, yz 0, 2 y
则
即
取y 1,则m (1, 0 ,1).·········7分
mAC 0, x 0 x(y 0 2)y 0, x 0
又平面ABC的法向量为n(0,0,1).··················································8分
设二面角P ACB的大小为, 0,.
|mn| 1
cos
所以 |m||n| 2 y 2 .···············································9分
2 0
x
0
因为BC 1,所以x 2 y 2 1,·······················································10分
0 0
高三数学试题 第12页(共24页)y 2
令t 0 ,表示圆x 2 y 2 1上的点与点(0,2)的斜率,
x 0 0
0
y 2
所以t≤ 3或t≥ 3,所以( 0 )2≥3,
x
0
1 3 5 2 5
即x ,y 时,cos取得最大值 ,此时sin取得最小值 .
0 2 0 2 5 5
2 5
故二面角P ACB的正弦值的最小值为 .··································· 12分
5
高三数学试题 第13页(共24页)22.(12分)
x2 y2 2
已知椭圆E: 1 a b0 的离心率是 ,上、下顶点分别为A,B.圆
a2 b2 2
O:x2 y2 2与x轴正半轴的交点为P,且 PAPB1 .
(1)求E的方程;
(2)直线l与圆O相切且与E相交于M,N两点,证明:以MN 为直径的圆恒过定点.
【命题意图】本小题主要考查椭圆的标准方程,直线与圆的位置关系等基础知识;考查运算
求解、逻辑推理和创新能力等;考查数形结合、函数与方程等思想;体现基础
性、综合性与创新性,导向对直观想象、逻辑推理、数学运算等核心素养的关
注.
【试题解析】解法一:(1)由已知得A(0,b),B(0,b),P( 2,0).····························1分
则PA( 2,b),PB( 2,b), PAPB2b2 1 ,所以b2 3.·······3分
c 2
因为e ,又b2 c2 a2,所以c2 3,a2 6.
a 2
x2 y2
故E的方程为 1.·································································4分
6 3
(2)当直线l的斜率存在时,设l的方程为ykxm,即kx ym0.··· 5分
m
因为直线l与圆O相切,所以 2 ,即m2 2k2 2.···················6分
k2 1
设M(x ,y ),N(x ,y ),则 y kx m,y kx m.
1 1 2 2 1 1 2 2
y kxm,
由x2 y2
1,
6 3
化简,得(2k2 1)x2 4kmx2m2 60,············································7分
4km
x x ,
1 2 2k2 1
由韦达定理,得 ····················································8分
2m2 6
x x ,
1 2 2k2 1
所以 y y (kx m)(kx m)
1 2 1 2
k2x x km(x x )m2
1 2 1 2
2m2 6 4km
k2 km m2
2k2 1 2k2 1
高三数学试题 第14页(共24页)m2 6k2
,·····································································9分
2k2 1
2m2 6 m2 6k2 3(m2 2k2 2)
所以x x y y 0,·····················10分
1 2 1 2 2k2 1 2k2 1 2k2 1
故OM ON ,即以MN 为直径的圆过原点O.···································· 11分
当直线l的斜率不存在时,l的方程为 x 2 或 x 2 .
这时M( 2, 2),N( 2, 2)或M( 2, 2),N( 2, 2).
显然,以MN 为直径的圆也过原点O.
综上,以MN 为直径的圆恒过原点O.················································12分
解法二:(1)同解法一.·············································································· 4分
(2)设直线l与圆O相切于点Q(x ,y ),M(x ,y ),N(x ,y ).···············5分
0 0 1 1 2 2
y
当x y 0时,则k 0 .
0 0 OQ x
0
x
因为直线l与圆O相切,所以l OQ,所以k 0 .···························· 6分
l y
0
x
则直线l的方程为y y 0 (xx ),
0 y 0
0
因为x 2 y 2 2,故l的方程可化为x x y y2.································ 7分
0 0 0 0
x x y y 2,
0 0
由x2 y2
1,
6 3
化简,得(2x 2 y 2)y2 4y y46x 2 0,(2x 2 y 2)x2 8x x86y 2 0.
0 0 0 0 0 0 0 0
···································································································8分
46x 2 86y 2
所以 y y 0 ,x x 0 .············································· 9分
1 2 2x 2 y 2 1 2 2x 2 y 2
0 0 0 0
86y 2 46x 2 126y 26x 2
所以x x y y 0 0 0 0 0,·················10分
1 2 1 2 2x 2 y 2 2x 2 y 2 2x 2 y 2
0 0 0 0 0 0
故OM ON ,即以MN 为直径的圆过原点O.···································· 11分
当x y 0时,则Q( 2,0)或Q(0, 2),
0 0
这时M( 2, 2),N( 2, 2)或M( 2, 2),N( 2, 2).
显然,以MN 为直径的圆也过原点O.
综上,以MN 为直径的圆恒过原点O.················································12分
高三数学试题 第15页(共24页)