当前位置:首页>文档>2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)

2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)

  • 2026-02-12 13:11:13 2026-02-12 13:11:13

文档预览

2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)
2024届福建省泉州市高中毕业班质量检测(一)数学解答题答案_2023年8月_01每日更新_30号_2024届福建省泉州市高中毕业班质量检测(一)

文档信息

文档格式
pdf
文档大小
0.474 MB
文档页数
15 页
上传时间
2026-02-12 13:11:13

文档内容

保密★使用 前 泉州市 2024 届高中毕业班质量监测(一) 2023.08 数 学 【解答题部分】 本试卷共22题,满分 150分,共 8页。考试用时120分钟。 四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。 17.(10分) a 数列 a 中,a 1,且a  n . n 1 n1 a 1 n (1)求 a 的通项公式; n 2n (2)令b  ,记数列 b 的前n项和为S ,求S . n a n n 8 n 【命题意图】本小题主要考查等差数列的定义、通项公式与数列求和等基础知识,考查运算 求解能力,考查函数与方程、化归与转化等思想,体现基础性,导向对发展数 学运算等核心素养的关注. 【试题解析】解法一: a 1 1 (1) 由a  n ,可得  1.····················································1分 n1 a 1 a a n n1 n 1 因为a 1,所以 1.···································································2分 1 a 1 1 所以数列{ }是首项为1,公差为1的等差数列.··································· 3分 a n 1 1 所以 n,即a  .····································································4分 a n n n 2n (2) 因为b  ,所以b n2n.····························································5分 n a n n 又S b b b , n 1 2 n 所以S 21222 828①.·······················································6分 8 ①式两边同乘以2,得2S 22 2238281②,·························· 7分 8 ②-①,得S (222 2328)829,······································8分 8 高三数学试题 第1页(共24页)2(128) 所以S  829 2729 3586.····································10分 8 12 解法二: a (1) 由a  n ,可得a a a a . n1 a 1 n1 n n1 n n 1 1 1 1 两边同除以a a ,得1  ,即  1.····························· 1分 n1 n a a a a n n1 n1 n 1 因为a 1,所以 1.·································································· 2分 1 a 1 1 所以数列{ }是首项为1,公差为1的等差数列.··································3分 a n 1 1 所以 n,即a  .···································································4分 a n n n 2n (2) 因为b  ,所以b n2n.····························································5分 n a n n 所以b  2,b 8,b  24,b 64,b 160,b 384,b 896,b  2048,·······9分 1 2 3 4 5 6 7 8 所以S b b b  2824641603848962048 3586.······10分 8 1 2 8 高三数学试题 第2页(共24页)18.(12分) 泉州是历史文化名城、东亚文化之都,是联合国认定的“海上丝绸之路”起点.著名的 “泉州十八景”是游客的争相打卡点,泉州文旅局调查打卡十八景游客,发现 90%的人至少 打卡两个景点.为提升城市形象,泉州文旅局为大家准备了 4 种礼物,分别是世遗泉州金属 书签、闽南古厝徽章、开元寺祈福香包、小关公陶瓷摆件.若打卡十八景游客至少打卡两个 景点,则有两次抽奖机会;若只打卡一个景点,则有一次抽奖机会.每次抽奖可随机获得 4 种礼物中的1种礼物.假设打卡十八景游客打卡景点情况相互独立. (1)从全体打卡十八景游客中随机抽取3人,求3人抽奖总次数不低于4次的概率; (2)任选一位打卡十八景游客,求此游客抽中开元寺祈福香包的概率. 【命题意图】本小题主要考查离散型随机变量的分布列、条件概率、全概率公式等基础知识; 考查运算求解、推理论证能力等;考查化归与转化思想等.体现基础性、应用 性和综合性,导向对发展数学运算、数学抽象等核心素养的关注. 【试题解析】解法一: (1) 设3人抽奖总次数为X ,则X 的可能取值为3,4,5,6.··························· 1分 9 由题意知,每位打卡十八景游客至少打卡两个景点的概率为 , 10 1 只打卡一个景点的概率为 .··························································2分 10 9 1 27 依题可得P(X 4)C1 ( )2  ,···········································3分 3 10 10 1000 9 1 243 P(X 5)C2( )2  ,···········································4分 3 10 10 1000 9 729 P(X 6)( )3  ,···················································· 5分 10 1000 27243729 所以P(X 4) P(X 4)P(X 5)P(X 6) 0.999. 1000 ····································································································6分 (2) 记事件A“每位打卡十八景游客至少打卡两个景点”, 则 A“每位打卡十八景游客只打卡一个景点”, 事件B“一位打卡十八景游客抽中开元寺祈福香包”,······················· 7分 9 1 3 7 1 则P(A) ,P(A) ,P(B| A)1( )2  ,P(B| A) ,··········· 9分 10 10 4 16 4 高三数学试题 第3页(共24页)则P(B) P(AB AB) P(AB)P(AB)  P(A)P(B| A)P(A)P(B| A) 9 7 1 1 67      .·····················································12分 10 16 10 4 160 解法二: (1)设3人抽奖总次数为X ,则X 的可能取值为3,4,5,6.····························1分 9 由题意知,每位打卡十八景游客至少打卡两个景点的概率为 , 10 1 只打卡一个景点的概率为 .··························································2分 10 9 1 1 依题可得P(X 3)C0( )0( )3  ,······································5分 3 10 10 1000 1 999 所以P(X≥4)1P(X 3)1( )3  0.999.····························6分 10 1000 (2) 同解法一.··················································································12分 解法三: (1)设3人抽奖总次数为X ,设抽取的 3 位打卡十八景游客中至少打卡两个景点的 人数为Y ,则X 2Y  3Y 3Y ,················································1分 由题可知,Y ~ B  3,0.9 ,······························································· 4分 1 故P(X 4) P(3Y 4) P(Y 1)1P(Y 0)1( )3 0.999.··········6分 10 (2) 同解法一.··················································································12分 高三数学试题 第4页(共24页)19.(12分) △ABC的内角A,B,C所对的边分别为a,b,c,且满足ccosB(b2a)cosC 0. (1)求C ;   (2)若CD平分ACB ,且AD2DB,CD  2,求△ABC的面积. 【命题意图】本小题主要考查解三角形、三角恒等变换等基础知识,考查推理论证、运算求 解等能力,考查数形结合和化归与转化等思想,体现综合性与应用性,导向对 发展直观想象、逻辑推理及数学运算等核心素养的关注. 【试题解析】解法一: (1)因为ccosB(b2a)cosC 0, 所以由正弦定理,可得sinCcosB(sinB2sinA)cosC 0,·················· 1分 即sinCcosBsinBcosC2sinAcosC 0,sin(BC)2sinAcosC 0,···2分 所以sinA2sinAcosC 0,···························································· 3分 1 又sin A0,所以cosC  ,·························································4分 2 2 因为C(0,,所以C  .··························································5分 3    2 1 (2) 因为AD2DB,所以CD  CB CA,···········································6分 3 3  2 4 2 1 2 4  两边平方,得CD  CB  CA  CBCA,····································7分 9 9 9 即4a2 b2 2ab36①.································································· 8分 b AD 又因为CD平分ACB ,所以   2,即b2a②.························9分 a DB 由①②,解得a 3,b6.····························································· 10分 1 2 9 3 所以S  absinC 9sin  .··········································· 12分 △ABC 2 3 2 高三数学试题 第5页(共24页)解法二: a2 c2 b2 a2 b2 c2 (1)在△ABC中,由余弦定理,得cosB  ,cosC  , 2ac 2ab ·································································································1分 又因为ccosB(b2a)cosC 0, a2 c2 b2 a2 b2 c2 a2 b2 c2 所以    0,····································2分 2a 2a b 即a2 b2 c2 ab,······································································ 3分 a2 b2 c2 1 所以cosC   ,··························································4分 2ab 2 2 因为C(0,,所以C  .··························································5分 3   AD (2) 在△ABC中,AD2DB,所以 2,···········································6分 DB b AD 又因为CD平分ACB ,所以   2,即b2a①.························7分 a DB 在△ACD中,由余弦定理,得CA2 CD2 AD2 2CACDcosACD, 4 即b2 4 c2 2b②.····································································8分 9 在△BCD中,由余弦定理,得CD2 CB2 BD2 2CDCBcosDCB, 1 即a2 4 c2 2a③.····································································9分 9 由①②③解得a 3,b6.···························································10分 1 2 9 3 所以S  absinC 9sin  .··········································· 12分 △ABC 2 3 2 解法三:(1)同解法一.············································································5分 (2) 过D点作DE∥AC交CB于点E .······················································6分 因为ACB 120,且CD平分ACB , 所以ACD CDE DCE 60,··············································· 7分 所以△CDE 为等边三角形,所以CD CE  DE 2.····························8分 DE BE BD 1 又因为    ,所以BC 3,AC  6.···························10分 AC BC BA 3 1 2 9 3 所以S  absinC 9sin  .··········································· 12分 △ABC 2 3 2 高三数学试题 第6页(共24页)解法四:(1)同解法一.············································································5分   AD (2) 在△ABC中,AD2DB,所以 2.···········································6分 DB b AD 又因为CD平分ACB,所以   2.··········································7分 a DB 1 3 如图,以C 为原点建系:C(0,0),B(a,0),A(a, 3a),D( a, a).··8分 3 3 1 3 由CD  2,所以( a)2 ( a)2 4,所以a 3,··································9分 3 3 则b6.····················································································10分 1 2 9 3 所以S  absinC 9sin  .··········································· 12分 △ABC 2 3 2 高三数学试题 第7页(共24页)20.(12分) 已知函数 f(x)(x2)(aexx). (1)当a4时,求曲线y  f(x)在(0, f(0))处的切线方程; (2)讨论 f(x)的单调性. 【命题意图】本小题主要考查运用导数求切线方程,判断函数的单调性等基础知识;考查推 理论证、运算求解等能力;考查化归与转化、数形结合等数学思想;体现综合 性、应用性与创新性,导向对发展逻辑推理、数学运算、直观想象等核心素养 的关注. 【试题解析】 (1) 由已知 f(x)(x2)(aexx), 则 f(x)aex xaex(x2)(x2) (x1)(aex2),····························1分 当a4时, f(0)8, f(0)2,·················································· 3分 则曲线y  f(x)在(0, f(0))处的切线方程为y82x,即2x y80.·4分 (2) 由(1)知, f(x)(x1)(aex2), ①当a≤0时,aex 20, 当x(,1)时, f(x)0, f(x)在(,1)单调递增;···························5分 当x(1,)时, f(x)0, f(x)在(1,)单调递减;···························6分 2 ②当a0时,由 f(x)(x1)(aex2)0,得x 1,x ln ,············ 7分 1 2 a 2 (i)当0a 时,x  x , 1 2 e 2 2 当x(,1)(ln ,)时, f(x)0, f(x)在(,1),(ln ,)单调递增; a a ···································································································8分 2 2 当x(1,ln )时, f(x)0, f(x)在(1,ln )单调递减;························· 9分 a a 2 (ii)当a 时,x  x 1, f(x)≥0, f(x)在R单调递增;··············10分 1 2 e 2 (iii)当a 时,x  x , 1 2 e 2 2 当x(,ln )(1,)时, f(x)0, f(x)在(,ln ),(1,)单调递增; a a ·································································································11分 高三数学试题 第8页(共24页)2 2 当x(ln ,1)时, f(x)0, f(x)在(ln ,1)单调递减; a a 综上可得:①当a≤0时, f(x)在(,1)单调递增,在(1,)单调递减; 2 2 2 ②当0a 时, f(x)在(,1),(ln ,)单调递增,在(1,ln )单调递减; e a a 2 ③当a 时, f(x)在R单调递增; e 2 2 2 ④当a 时, f(x)在(,ln ),(1,)单调递增,在(ln ,1)单调递减.··· 12分 e a a 高三数学试题 第9页(共24页)21.(12分) 如图,三棱锥P ABC 中,PAPB,PA PB,AB2BC2,平面PAB 平面ABC. (1)求三棱锥P ABC 的体积的最大值; (2)求二面角PACB的正弦值的最小值. 【命题意图】本小题主要考查线面垂直的判定定理,面面垂直的性质定理,三棱锥体积,二 面角,三角形面积等基础知识;考查空间想象能力、推理论证及运算求解能力; 考查数形结合思想、化归与转化思想等;体现基础性、综合性与应用性,导向 对发展逻辑推理、数学运算、直观想象等核心素养的关注. 【试题解析】解法一:(1)取AB的中点O,连接PO. 因为PA PB,所以PO  AB.························································1分 又因为平面PAB 平面ABC,平面PAB平面ABC  AB,PO平面PAB, 所以PO平面ABC.···································································· 2分 因为PAPB,PA PB,AB 2BC 2, 所以PO 1,BC 1.····································································3分 所以三棱锥 PABC 的体积为 1 1 1  1 V  S PO   ABBCsinABC PO sinABC,··········4分 PABC 3 △ABC 3 2  3 1 因为ABC 0,,所以0sinABC≤1,V „ , PABC 3  当且仅当sinABC 1,即ABC  时,等号成立. 2 1 故三棱锥PABC 的体积的最大值为 .···············································5分 3 (2)由(1)可知PO平面ABC,所以PO  AC .······························6分 过O作OD  AC于D,连结PD. 高三数学试题 第10页(共24页)因为POOD O ,所以AC 平面POD,·········································7分 又PD平面POD,所以PD  AC , 所以PDO为二面角P ACB的平面角.··········································8分 PO 1 在Rt△PDO中,tanPDO   ,············································9分 OD OD 1 1 因为 0OD≤ BC  ,当且仅当BC  AC 时等号成立.······················10分 2 2 所以tanPDO的最小值为2.··························································11分 2 5 此时sinPDO取得最小值 . 5 2 5 故二面角P ACB的正弦值的最小值为 .··································· 12分 5 解法二:(1)同解法一.············································································5分 (2)由(1)可知PO平面ABC,   以O为坐标原点,向量OB,OP为x轴,z 轴正方向,建立如图所示的空间直角  坐标系Oxyz.则P(0,0,1),A(1,0,0),B(1,0,0),AP(1,0,1).  设C(x ,y ,0)(0 x 2,y ≠0),则 AC (x 1,y ,0) .···························6分 0 0 0 0 0 0 设平面PAC 的法向量为m(x,y,z).   mAP 0, xz 0, x 1 则   即  取x 1,则m (1, 0 ,1).·······7分 mAC 0,   x 0 1  x y 0 y 0, y 0 又平面ABC的法向量为n(0,0,1).··················································8分 设二面角P ACB的大小为, 0,. |mn| 1 cos  所以 |m||n|  x 1 2 .················································9分 2 0   y  0 因为BC 1,所以 x 1 2  y 2 1,·················································10分 0 0 高三数学试题 第11页(共24页) x 1 2  x 1 2 令t  0   t 0 ,则t  0 ,  y  1 x 1 2 0 0 整理可得 t1  x 2  22t  x 10, 0 0 所以 22t 2 4  t1 ≥0,解得t≥3.···········································11分 1 3 5 所以当t 3,即x  ,y  时,cos取得最大值 , 0 2 0 2 5 2 5 此时sin取得最小值 . 5 2 5 故二面角P ACB的正弦值的最小值为 .···································12分 5 解法三:(1)同解法一.············································································5分 (2)由(1)可知 PO平面 ABC ,  以B为坐标原点,向量 BA 为y轴正方向,建立如图所示的空间直角坐标系·····  Oxyz.则P(0,1,1),A(0,2,0),B(0,0,0),AP(0,1,1).  设C(x ,y ,0)(1 x 1,y ≠0),则AC (x ,y 2,0).··························6分 0 0 0 0 0 0 设平面PAC 的法向量为m(x,y,z).   mAP 0, yz 0, 2 y 则   即  取y 1,则m (1, 0 ,1).·········7分 mAC 0,  x 0 x(y 0 2)y 0, x 0 又平面ABC的法向量为n(0,0,1).··················································8分 设二面角P ACB的大小为, 0,. |mn| 1 cos  所以 |m||n| 2 y  2 .···············································9分 2 0   x  0 因为BC 1,所以x 2  y 2 1,·······················································10分 0 0 高三数学试题 第12页(共24页)y 2 令t  0 ,表示圆x 2  y 2 1上的点与点(0,2)的斜率, x 0 0 0 y 2 所以t≤ 3或t≥ 3,所以( 0 )2≥3, x 0 1 3 5 2 5 即x  ,y  时,cos取得最大值 ,此时sin取得最小值 . 0 2 0 2 5 5 2 5 故二面角P ACB的正弦值的最小值为 .··································· 12分 5 高三数学试题 第13页(共24页)22.(12分) x2 y2 2 已知椭圆E:  1  a b0 的离心率是 ,上、下顶点分别为A,B.圆 a2 b2 2   O:x2  y2 2与x轴正半轴的交点为P,且 PAPB1 . (1)求E的方程; (2)直线l与圆O相切且与E相交于M,N两点,证明:以MN 为直径的圆恒过定点. 【命题意图】本小题主要考查椭圆的标准方程,直线与圆的位置关系等基础知识;考查运算 求解、逻辑推理和创新能力等;考查数形结合、函数与方程等思想;体现基础 性、综合性与创新性,导向对直观想象、逻辑推理、数学运算等核心素养的关 注. 【试题解析】解法一:(1)由已知得A(0,b),B(0,b),P( 2,0).····························1分     则PA( 2,b),PB( 2,b), PAPB2b2 1 ,所以b2 3.·······3分 c 2 因为e  ,又b2 c2 a2,所以c2 3,a2 6. a 2 x2 y2 故E的方程为  1.·································································4分 6 3 (2)当直线l的斜率存在时,设l的方程为ykxm,即kx ym0.··· 5分 m 因为直线l与圆O相切,所以  2 ,即m2 2k2 2.···················6分 k2 1 设M(x ,y ),N(x ,y ),则 y kx m,y kx m. 1 1 2 2 1 1 2 2  y kxm,  由x2 y2   1,  6 3 化简,得(2k2 1)x2 4kmx2m2 60,············································7分  4km x x  ,   1 2 2k2 1 由韦达定理,得 ····················································8分  2m2 6 x x  ,  1 2 2k2 1 所以 y y (kx m)(kx m) 1 2 1 2 k2x x km(x x )m2 1 2 1 2 2m2 6 4km k2 km m2 2k2 1 2k2 1 高三数学试题 第14页(共24页)m2 6k2  ,·····································································9分 2k2 1 2m2 6 m2 6k2 3(m2 2k2 2) 所以x x  y y     0,·····················10分 1 2 1 2 2k2 1 2k2 1 2k2 1 故OM ON ,即以MN 为直径的圆过原点O.···································· 11分 当直线l的斜率不存在时,l的方程为 x 2 或 x 2 . 这时M( 2, 2),N( 2, 2)或M( 2, 2),N( 2, 2). 显然,以MN 为直径的圆也过原点O. 综上,以MN 为直径的圆恒过原点O.················································12分 解法二:(1)同解法一.·············································································· 4分 (2)设直线l与圆O相切于点Q(x ,y ),M(x ,y ),N(x ,y ).···············5分 0 0 1 1 2 2 y 当x y 0时,则k  0 . 0 0 OQ x 0 x 因为直线l与圆O相切,所以l OQ,所以k  0 .···························· 6分 l y 0 x 则直线l的方程为y y  0 (xx ), 0 y 0 0 因为x 2  y 2 2,故l的方程可化为x x y y2.································ 7分 0 0 0 0 x x y y 2,  0 0 由x2 y2   1,  6 3 化简,得(2x 2  y 2)y2 4y y46x 2 0,(2x 2  y 2)x2 8x x86y 2 0. 0 0 0 0 0 0 0 0 ···································································································8分 46x 2 86y 2 所以 y y  0 ,x x  0 .············································· 9分 1 2 2x 2  y 2 1 2 2x 2  y 2 0 0 0 0 86y 2 46x 2 126y 26x 2 所以x x  y y  0  0  0 0  0,·················10分 1 2 1 2 2x 2  y 2 2x 2  y 2 2x 2  y 2 0 0 0 0 0 0 故OM ON ,即以MN 为直径的圆过原点O.···································· 11分 当x y 0时,则Q( 2,0)或Q(0, 2), 0 0 这时M( 2, 2),N( 2, 2)或M( 2, 2),N( 2, 2). 显然,以MN 为直径的圆也过原点O. 综上,以MN 为直径的圆恒过原点O.················································12分 高三数学试题 第15页(共24页)