当前位置:首页>文档>2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题

2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题

  • 2026-02-14 02:07:10 2026-02-14 02:06:13

文档预览

2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题
2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题
2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题
2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题
2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题
2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题
2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题
2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题
2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题
2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题
2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案_2024年5月_01按日期_8号_2024届福建省三明市高三下学期三模_福建省三明市普通高中2024届高三毕业班5月质量检测数学试题

文档信息

文档格式
pdf
文档大小
0.270 MB
文档页数
11 页
上传时间
2026-02-14 02:06:13

文档内容

三明市 2024 年普通高中高三毕业班质量检测 数学参考答案及评分细则 评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内 容比照评分标准制定相应的评分细则. 2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度, 可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答 有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分. 一、选择题:本大题考查基础知识和基本运算.每小题5分,满分40分. 1.C 2.C 3.D 4.A 5.A 6.B 7.B 8.C 二、选择题:本大题考查基础知识和基本运算.每小题6分,满分18分.全部选对的得6分, 部分选对的得部分分,有选错的得0分. 9.BC 10.ACD 11.BCD 三、填空题:本大题考查基础知识和基本运算.每小题5分,满分15分. 1  12. 6 13.  ,3  14.  6,7,8,9  , 21 (第一空2分,第二空3分) e  四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.解法一:(1)证明:取BD的中点M ,连接PM、MC,·······················1分 ∵△BPD和△BCD均为等边三角形, ∴BDPM,BD CM .··································································2分 又PM CM M , ∴BD平面CPM ,·········································································3分 又CP平面CPM , ∴BDCP.····················································································4分   (2)以M 为原点,MB,MC所在直线为x,y轴,过M 作平面BCD的垂线所在直 线为z轴,如图所示建立空间直角坐标系,···········································5分 ∵平面ABD平面PBD,平面ABD平面PBDBD,PM 平面PBD,PM  BD ∴PM 平面ABD. ∵△PBD和△CBD均为等边三角形, ∴PM MC  PC  3,PMC 60, 第 1 页 共 11 页 {#{QQABDYaEoggoAJJAABhCQQUgCkAQkAEAAKoGwAAIMAAAiBFABCA=}#}∴P  0, 3 , 3 ,C  0, 3,0  ,B  1,0,0 ,··············································6分    2 2   3 3      3 3 ∴BP 1, , ,BC  1, 3,0 .MP 0, ,       2 2  2 2 设平面PBC 的法向量为m (x,y,z)   3 3  mBP 0, x y z 0, ∴  即 2 2 mBC 0  x 3y 0   取z 1,则m  3, 3,1 ,···································································8分   3 3 平面ABD的法向量MP 0, , ,·················································10分    2 2 设平面ABD与平面PBC 的夹角为,   MPn 3 39 ∴cos cos MP,n     ··································12分 MP n 3 13 13 39 ∴平面ABD与平面PBC 夹角的余弦值为 .····································13分 13 解法二:(1)同解法一······································································4分 (2)如图,取MC 的中点E为原点,连接PE,过点E作EF //MB,交BC于点F , 由(1)知CM  BD,EF  MC, 又由(1)知BD平面CPM ,又PE平面CPM ,∴BDPE, ∵△PBD和△CBD均为等边三角形且棱长为2, ∴PM MC  PC  3,PE  MC, BDMC  M PE 平面CBD    以E为原点,EF,EC,EP所在直线为x,y,z轴, 建立空间直角坐标系,如图所示··························································5分 ∵平面ABD平面PBD,平面ABD平面PBDBD,PM 平面PBD,PM  BD ∴PM 平面ABD, 第 2 页 共 11 页 {#{QQABDYaEoggoAJJAABhCQQUgCkAQkAEAAKoGwAAIMAAAiBFABCA=}#}  3 3 平面ABD的法向量MP 0, , ···················································7分    2 2  3  3   3  ∴P0,0, ,C  0, ,0  ,B  1, ,0  ·············································8分  2  2   2       3 3 ∴CB  1, 3,0 ,CP 0, , ,    2 2 设平面PBC 的法向量为m  x,y,z ,   x 3y 0  mCP 0    ∴  ,即 3 3 ,取z 1,则m  3, 3,1 ,················· 10分 mCB 0  y z 0  2 2 设平面ABD与平面PBC 的夹角为,   MPm 3 39 ∴cos cos MP,m     ,······························12分 MP m 3 13 13 39 ∴平面ABD与平面PBC 夹角的余弦值为 .····································13分 13 16.解法一:  1 3  (1)由题意 f(x)sinxcos(x ) sinx cosxsin(x ) 6 2 2 3 ·····································································································2分 π 因为 f  x 图象的两条相邻对称轴间的距离为 , 2 所以周期T  2π 2 π ,故2,所以 f  x sin  2x π ,·····················4分  2  3 π π π 当x 0,m 时,2x   ,2m ,·················································5分 3 3 3 π π 3π 因为 f  x 在区间 0,m 上有最大值无最小值,所以 2m  ,·········6分 2 3 2 π 7π  π 7π 解得 m ,所以m的取值范围为 , .···································7分 12 12 12 12 第 3 页 共 11 页 {#{QQABDYaEoggoAJJAABhCQQUgCkAQkAEAAKoGwAAIMAAAiBFABCA=}#} (2)将函数 f  x 图象向右平移 个单位长度, 6    得到 y sin  2(x )  sin2x的图象,············································8分  6 3 再将图象上所有点的横坐标变为原来的2倍(纵坐标不变), 得到g(x)sinx的图象,···································································9分 1 1 所以函数h(x) xsinx,所以h(x) cosx,································10分 2 2 1 令h(x)0得cosx , 2 因为x(2,), 4 所以当x(2, )时,h(x)0,h(x)单调递增,····························11分 3 4 2 当x( , )时,h(x)0,h(x)单调递减,································ 12分 3 3 2 2 当x( , )时,h(x)0,h(x)单调递增,·································· 13分 3 3 2 当x( ,)时,h(x)0,h(x)单调递减.·········································14分 3 4 2 所以函数h(x)的极大值点为 和 .··············································15分 3 3 解法二:(1)同解法一.····································································· 7分  (2)将函数 f  x 图象向右平移 个单位长度, 6    得到 y sin  2(x )  sin2x的图象,············································8分  6 3 再将图象上所有点的横坐标变为原来的2倍(纵坐标不变), 得到g(x)sinx的图象,···································································9分 第 4 页 共 11 页 {#{QQABDYaEoggoAJJAABhCQQUgCkAQkAEAAKoGwAAIMAAAiBFABCA=}#}1 1 所以函数h(x) xsinx,所以h(x) cosx,································10分 2 2 1 令h(x)0得cosx , 2 2 2 当 2k x 2k时,h(x)0,h(x)单调递增, 3 3 因为x(2,) 4 所以k 1时,2 x ,h(x)单调递增,··································11分 3 2 2 k 1时,  x h(x)单调递增·················································12分 3 3 2 4 当 2k x 2k时,h(x)0,h(x)单调递减, 3 3 因为x(2,) 2 k 0时,  x,h(x)单调递减,·············································· 13分 3 4 2 k 1时,  x ,h(x)单调递减,······································ 14分 3 3 4 2 所以函数h(x)的极大值点为 和 .··············································15分 3 3 解法三:(1)同解法一.····································································· 7分  (2)将函数 f  x 图象向右平移 个单位长度, 6    得到 y sin  2(x )  sin2x的图象,············································8分  6 3 再将图象上所有点的横坐标变为原来的2倍(纵坐标不变), 得到g(x)sinx的图象,···································································9分 1 1 所以函数h(x) xsinx,所以h(x) cosx,································10分 2 2 第 5 页 共 11 页 {#{QQABDYaEoggoAJJAABhCQQUgCkAQkAEAAKoGwAAIMAAAiBFABCA=}#}1 令h(x)0得cosx 2 因为x(2,),所以x,h(x),h(x)的变化情况如下: 4 4 4 2 2 2 2 2 2 x (2, )  ( , )  ( , ) ( ,) 3 3 3 3 3 3 3 3 3 h(x)  0  0  0  极大 极小 极大 h(x) 单调递增 单调递减 单调递增 单调递减 值 值 值 ···································································································14分 4 2 所以函数h(x)的极大值点为 和 .··············································15分 3 3 17.解: (1)记随机任选1题为家政、 园艺、 民族工艺试题分别为事件A(i 1,2,3), i 记随机任选1题,甲答对为事件B,··············································1分 3 则P(B)P(A)P(B| A)P(A)P(B| A)P(A )P(B| A )P(A )P(B| A ) i i 1 1 2 2 3 3 i1 ······························································································ 2分 1 2 1 2 1 4 3        ,·······························································4分 4 5 4 5 2 5 5 3 所以随机任选1题,甲答对的概率为 ;···········································5分 5 (2) 乙答对记为事件C,则 1 1 1 1 1 1 1 P(C) P(A)P(C| A)P(A )P(C| A )P(A )P(C| A )       1 1 2 2 3 3 4 2 4 2 2 2 2 ·····································································································7分 设每一轮比赛中甲得分为X , 3  1 3 则P(X 1) P(BC) P(B)P(C)  1   ,································· 8分 5  2 10 3 1  3  1 1 P(X 0) P(BCBC) P(BC)P(BC)   1   1   ,········9分 5 2  5  2 2 第 6 页 共 11 页 {#{QQABDYaEoggoAJJAABhCQQUgCkAQkAEAAKoGwAAIMAAAiBFABCA=}#} 3 1 1 P(X 1) P(BC) 1    .····················································10分  5 2 5 三轮比赛后,设甲总得分为Y , 3  3  27 则P(Y 3)    ,······························································11分 10 1000 2  3  1 27 P(Y 2)C2     ,··························································12分 3 10 2 200 2 2 3 1  3  1 279 P(Y 1)C1    C2     ,··································· 13分 3 10 2 3 10 5 1000 所以甲最终获得奖品的概率为 27 27 279 441 P  P(Y 3)P(Y 2)P(Y 1)    .····················15分 1000 200 1000 1000 18.(1)因为a a a a ( 2)n2n① 1 2 n1 n 所以当n2,a a a a ( 2)(n1)2n1②,·············································1分 1 2 n n1 ② 由 得a 2n··················································································2分 ① n 因为n1时a 2也符合上式,···························································· 3分 1 所以数列a 是以2为首项,2为公比的等比数列, n 所以a 2n,nN*.············································································· 4分 n 2  12n (2)由(1)知, S   2n12 ,···············································5分 n 12 因为不等式(1)ntS 14S 2对任意的 nN恒成立,又S 0且S 单调递增, n n n n ·····································································································6分 14 所以(1)ntS n  S 对任意的 nN恒成立,··········································· 7分 n 因为S =2,S 6,S =14,S =30,·························································· 8分 1 2 3 4 14  14 所以当n为偶数时,原式化简为tS n  S 对任意的 nN恒成立,即t  S n  S   n n min 25 因为S 6 14,所以当n2时,t ,············································10分 2 3 第 7 页 共 11 页 {#{QQABDYaEoggoAJJAABhCQQUgCkAQkAEAAKoGwAAIMAAAiBFABCA=}#}14  14 当n为奇数时,原式化简为tS n  S 对任意的 nN恒成立,即t  S n  S   n n min 因为S 2 14S 14,所以当n1时,t9,所以t9,··················12分 1 3 25 综上可知,9t .······································································ 13分 3 1 1 (3)因为b   ,······························································14分 n log a 2 2n 2 n 所以b 是单调递减数列, n 所以 b  b ···············································································15分 n1 n b b 2(b b ) 2(b b ) 所以 n n1  n n1  n n1 2( b  b ) b 2 b b  b n n1 n n n n1 b b b b b b 1 2  2 3 + n n1 2( b  b  b  b  b  b ) 1 2 2 3 n n1 b b b 1 2 n 1 2  2 2 原不等式得证.················································································17分  1 1 y  19.解法一:(1)由题意可知双曲线y 的实轴为y  x,联立 x , x  y  x x1 x 1 1 解得 或 ,即双曲线y 的两顶点为(1,1),(1,1), y 1 y 1 x 故实轴长2a   11 2  11 2 2 2,即 a 2····································2分 1  函数y 的图象绕原点O顺时针旋转 后渐近线为y x,····················3分 x 4 1 所以 ab 2 ,c2, 所以,双曲线y 的离心率 e 2.·················· 4分 x 1  (2)由(1)知函数y 的图象绕原点O顺时针旋转 得到双曲线x2  y2  2的图象, x 4  1 所以,双曲线x2  y2  2的图象绕原点O逆时针旋转 得到函数y 的图象, 4 x ·····································································································5分 第 8 页 共 11 页 {#{QQABDYaEoggoAJJAABhCQQUgCkAQkAEAAKoGwAAIMAAAiBFABCA=}#}1 其渐近线分别为x轴和 y轴,此时设P(x , ), 0 x 0 1 因为y ,················································································6分 x2 1 1 1 所以P处切线斜率k  ,P处切线方程为y  (xx ) ,·········7分 x2 x x2 0 0 0 0 2 过P作切线分别交两条渐近线于A(0, ),B(2x ,0)·································· 8分 x 0 0 1 1 2 所以S  OAOB   2x 2, AOB 2 2 x 0 0 所以AOB的面积为定值2,即AOB的面积为定值2.·····························9分 3 3 3 (3)依题意知,函数 y  x 的两条渐近线分别为y  x和y轴, 3 2x 3 则实轴为 y  3x  3 3  x  3 y  x  2 由 3 2x ,联立解得 ,所以双曲线实半轴长a  3,   3  y  3x y   2 3 3  x2 将函数 y  x 的图象绕原点O顺时针旋转 得到曲线的方程为  y2 1, 3 2x 3 3 ···································································································10分  将F(1, 3),直线l:x 3y30绕原点O顺时针旋转 得到 3 3 F(2,0),直线l:x  ·····································································11分 2 则过F(2,0)直线交曲线右支于M,N两点, 3 3 设M(x ,y ),N(x ,y ),则C( ,y ),D( ,y ) 1 1 2 2 2 1 2 2 因为直线MN斜率不为0,所以设直线MN方程为x my2, x my2,  由x2 得(m2 3)y2 4my10,   y2 1  3 第 9 页 共 11 页 {#{QQABDYaEoggoAJJAABhCQQUgCkAQkAEAAKoGwAAIMAAAiBFABCA=}#} 4m y  y  , m2 30,   1 2 m2 3  且 ··························································12分   0  1 y y   1 2 m2 3 因为 y y 0,所以m2 3,·····························································13分 1 2 y  y y y 3 k  2 1 y y  2 1 (x ) 因为 NC 3 ,所以NC方程为 1 3 2 , x  x  2 2 2 2 3 1 y (x  ) my y  y 令 y 0得 1 2 2 3 1 2 2 1 3 x     y  y 2 y  y 2 2 1 2 1 y  y 由韦达定理可得my y  1 2 , 1 2 4 y  y 1 1 2  y 所以 4 2 1 3 1 3 7 x      y  y 2 4 2 4 2 1 7 7 所以直线NC过定点( ,0),由图象的对称性可知,MD过定点( ,0), 4 4 7 即直线NC与直线MD交点H( ,0),··············································15分 4 1 1 1 3 m2 1 那么S  HF y  y    (y  y )2 4y y   MNH 2 1 2 2 4 1 2 1 2 4 (m2 3)2 ···································································································16分 令t m2 1,则1t 4, m2 1 t 1   则 (m2 3)2 (t4)2 16 t 8 t 16 因为函数 y t 8在 1,4 上单调递减 t 3 1 3 所以当t 1,即m2 0时,MNH面积取最小值,最小值为   , 4 9 12 3 1 3 即MNH面积最小值为   .················································ 17分 4 9 12 解法二: 第 10 页 共 11 页 {#{QQABDYaEoggoAJJAABhCQQUgCkAQkAEAAKoGwAAIMAAAiBFABCA=}#}(1)同解法一.················································································4分 (2)当曲线E在点P处切线斜率不存在时,切线方程为 x  2,此时AOB面积为2, ·····································································································5分 当曲线E在点P处切线斜率存在时,设在点P处切线方程为 y kxm, y kxm, 联立 得(1k2)x2 2kmxm2 20, x2  y2 2 1k2 0, 则 ,化简得m2 2k2 2,k2 1···················· 6分  4k2m2 4(1k2)(m2 2)0 y kxm, m m 由 得A( , ),  y  x 1k 1k y kxm, m m 由 得B( , ).····························································7分  y x 1k 1k m m m m 4m2(1k2) 4 1k2 则 AB  (  )2 (  )2   , 1k 1k 1k 1k 1k2 m m 因为原点O到直线y kxm的距离d  ,···································8分 1k2 1 1 4 1k2 m 所以S  AB d  2, AOB 2 2 m 1k2 所以AOB面积为定值2.····································································9分 (3)同解法一.·············································································· 17分 第 11 页 共 11 页 {#{QQABDYaEoggoAJJAABhCQQUgCkAQkAEAAKoGwAAIMAAAiBFABCA=}#}