当前位置:首页>文档>宁德市2023-2024学年度第二学期期中高一质量检测数5.13.11学试卷参考答案_2024-2025高一(7-7月题库)_2024年7月试卷_0710福建省宁德市2023-2024学年高一下学期期末质量检测

宁德市2023-2024学年度第二学期期中高一质量检测数5.13.11学试卷参考答案_2024-2025高一(7-7月题库)_2024年7月试卷_0710福建省宁德市2023-2024学年高一下学期期末质量检测

  • 2026-02-15 16:57:31 2026-02-15 16:57:31

文档预览

宁德市2023-2024学年度第二学期期中高一质量检测数5.13.11学试卷参考答案_2024-2025高一(7-7月题库)_2024年7月试卷_0710福建省宁德市2023-2024学年高一下学期期末质量检测
宁德市2023-2024学年度第二学期期中高一质量检测数5.13.11学试卷参考答案_2024-2025高一(7-7月题库)_2024年7月试卷_0710福建省宁德市2023-2024学年高一下学期期末质量检测
宁德市2023-2024学年度第二学期期中高一质量检测数5.13.11学试卷参考答案_2024-2025高一(7-7月题库)_2024年7月试卷_0710福建省宁德市2023-2024学年高一下学期期末质量检测
宁德市2023-2024学年度第二学期期中高一质量检测数5.13.11学试卷参考答案_2024-2025高一(7-7月题库)_2024年7月试卷_0710福建省宁德市2023-2024学年高一下学期期末质量检测
宁德市2023-2024学年度第二学期期中高一质量检测数5.13.11学试卷参考答案_2024-2025高一(7-7月题库)_2024年7月试卷_0710福建省宁德市2023-2024学年高一下学期期末质量检测
宁德市2023-2024学年度第二学期期中高一质量检测数5.13.11学试卷参考答案_2024-2025高一(7-7月题库)_2024年7月试卷_0710福建省宁德市2023-2024学年高一下学期期末质量检测
宁德市2023-2024学年度第二学期期中高一质量检测数5.13.11学试卷参考答案_2024-2025高一(7-7月题库)_2024年7月试卷_0710福建省宁德市2023-2024学年高一下学期期末质量检测
宁德市2023-2024学年度第二学期期中高一质量检测数5.13.11学试卷参考答案_2024-2025高一(7-7月题库)_2024年7月试卷_0710福建省宁德市2023-2024学年高一下学期期末质量检测

文档信息

文档格式
docx
文档大小
0.536 MB
文档页数
8 页
上传时间
2026-02-15 16:57:31

文档内容

宁德市2023-2024学年度第二学期期末高一质量检测 数学参考答案及评分标准 说明: 一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果 考生的解法与本解法不同,可根据试题的主要考查内容比照评分标准制定相应的评分 细则. 二、对计算题,当考生的解答在某一部分解答未改变该题的内容和难度,可视影响的程度 决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的 解答有较严重的错误,就不再给分. 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一、单项选择题: 本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只 有一个选项是符合题目要求的. 1. C 2.A 3.D 4.D 5. B 6.C 7.C 8.B 第8题解析: 由 可得, , 所以 . 因为 为钝角,所以 ,且 不共线, 所以 ,即 ,且 . 当 时,有 且 ,所以 可取2,4,5,6; 当 时,有 , 可取5,6; 当 , , , 时, ,此时无解. 综上所述,满足条件的 有6种可能. 又先后抛掷两次,得到的样本点数共36种, 所以 为钝角的概率 二、多项选择题:本题共3小题,每小题6分, 共18分. 在每小题给出的选项中有多项符 合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分) 9. AD 10. ACD 11. AC 第11题解析: 对于A .该“刍童”的表面积为 ,所以正确 对于B .由轴截面的等腰梯形 可知,其高 ,如图所示: 高二数学参考答案 第1 页 共8页 学学学科科科网网网(((北北北京京京)))股股股份份份有有有限限限公公公司司司能够被完整放入该“刍童”内的圆台的最大的体积为 ,所以不正确 对于C .该“刍童”的外接球的球心到平面 的距离为 ,而平面 的外接圆 的圆心恰为线段 的中点,故该“刍童”的外接球的球心到平面 的距离为 ,所 以正确. 对于D ,若正四面体在此容器内部可以任意转动,则正四面体的外接球可以放进容器,棱 长为 的正四面体的外接球直径为 ,由轴截面的等腰梯形 可知,其高 ,如下图所示: 可知此棱台可放入的最大球的直径为 ,小于正四面体的外接球直径, 故不可以在此空心棱台容器内部任意转动,所以D不正确. 故选:AC 三、填空题:(本大题共3小题,每小题5分,共15分. 把答案填在答题卡的相应位置) 12. 2800 13. 14. 第14题解析: 如图示,可知: 是边长为2的菱形,且 , ,所以 四、解答题:本大题共5小小题,共77分. 解答应写出文字说明,证明过程或演算步骤 . 15. (本小题满分13分) 高二数学参考答案 第2 页 共8页 学学学科科科网网网(((北北北京京京)))股股股份份份有有有限限限公公公司司司(1)因为 ,································································2分 所以 ·····························································································4分 所以 ······························································6分 (2)因为 ···························································7分 ·················································································9分 所以 ······················································································11分 所以 ························································································13分 16. (本小题满分15分) 解:(1)证明:由于底面 为矩形,所以 ··································1分 又有 平面 , 平面 ,所以 ···································4分 因为 ,所以 平面 ·······················································6分 因为 平面 ,所以平面 平面 ·······································7分 (2)解:由于 即 为异面直线 和 所成角所成的角.·············8分 因为异面直线 和 所成角的正切值为 , 由于 平面 所以 所以在 中, ,所以 ····················································9分 由于 是边长为4的正三角形,取 的中点 ,连接 , 所以 ···········································································10分 因为平面 平面 , 平面 ,所以 平面 .···········11分 取 的中点 ,连接 , , , ,所以 所以 为二面角 的平面角,··················································13分 在 中, ,所以 . ·································14分 所以 为二面角 的平面角 ·················································15分 高二数学参考答案 第3 页 共8页 学学学科科科网网网(((北北北京京京)))股股股份份份有有有限限限公公公司司司17.(本小题满分15分) 解:(1)根据正弦定理可得: , ················2分 ··············································3分 因为 , ··········································································4分 所以 ··························································································5分 即 ···································································································7分 法二:根据余弦定理可得 ················2分 即 ,························································································3分 所以 ··························································································4分 因为 ,······················································································5分 所以 .······························································································7分 (2)解:因为 , 所以 ····························································8分 解得 ·····························································································9分 因为 平分 在 中根据正弦定理得: 在 中根据正弦定理得: 所以 ,······················································································11分 高二数学参考答案 第4 页 共8页 学学学科科科网网网(((北北北京京京)))股股股份份份有有有限限限公公公司司司所以 ,·························································································12分 所以 ···················13分 所以 ,··············································14分 解得 ,即 ;·································································15分 法二:因为 , 所以 ····························································8分 解得 ·····························································································9分 因为 平分 所以 ·······························12分 整理得: ················································································14分 即 ····························································································15分 18. (本小题满分17分) (1)根据频率分布直方图有,男生成绩样本数据的平均数 ························4分 所以男生成绩样本数据的平均数为71.(列式正确,计算错误扣1分) (2)在区间 和 内的男生成绩样本数据分别有4个和2个,···········5分 分别用 和 表示,则在这6个数据中随机抽取两个的样本空间 包含的样本点 有 , , 个数为 ,····················································································7分 高二数学参考答案 第5 页 共8页 学学学科科科网网网(((北北北京京京)))股股股份份份有有有限限限公公公司司司记事件 “这两个样本来自同一区间”, 则事件 包含的样本点有 个数为 ,······················································································9分 所以 ;·············································································10分 (3)设男生成绩样本数据为 , ,…, ,其平均数为71,方差为 女生成绩样本数据为 , ,…, ,其平均数为 , 方差为 ;总样本的平均数为 ,方差为 .··········································11分 由按比例分配分层随机抽样总样本平均数与各层样本平均数的关系, 得 .·············································································13分 ················································14分 ·············································15分 .··································································································17分 所以总样本的平均数和方差分别为 和 . 19.(本小题满分17分) (1)解:由于 是正方体, 两直线 , 与面 所成的角相等 即 ,由于 ·········································1分 法1: ,即 ····································3分 法2:所以 ,又有 是 的中点, ········3分 即 , 依题意平面内点 到两定点 距离之比为2,故点 的轨迹是圆, 而点 是正方体表面 上一动点(包括边界), 即点 的轨迹是一段阿波罗尼斯圆的弧.··················································4分 高二数学参考答案 第6 页 共8页 学学学科科科网网网(((北北北京京京)))股股股份份份有有有限限限公公公司司司画出上图弧线即给分,不要求精确·························································5分 (2)依题意可知:圆心 在 所在的直线上,············································6分 法一:作圆 与 交于点 ,与 的延长线上交于点 ,显然 恰为圆 的直 径,故依 , 恰好为 线段的三分之一分点, , , , , ·················································7分 法二:易知此圆 与 的交点为 ,与 的交点为 , 则满足: ,故在 , , 在 中, , 故 为正三角形,故 , , ··············7分 法一:设 与 所成的角为 ,可知 ·····························8分 ·················································9分 ·········································································10分 法二:(建系)以 为平面直角的坐标原点,分别以 ,过点 垂直于 的直线 为 , 轴,建立平面直角坐标系,故可设 , , , ·····················8分 其中 ················9分 高二数学参考答案 第7 页 共8页 学学学科科科网网网(((北北北京京京)))股股股份份份有有有限限限公公公司司司故 ······································································10分 (3)由(2)可知,当线段 的长最短时,即点 在直线 上, 故延长 交 于点 ,过点 做 ,交 于点 ,交 于点 ,交 于 点 ,连接 交 于点 ,所求的截面即为五边形 . 以下证明 平面 , 由于 , 平面 , 平 所以 平面 ,·······································································11分 故有 , , 在 中, 12分 ············································ 在 中, 13分 ········································· 在 中, ·············································14分 在 中, 15分 ············································ 在 中, ···········································16分 所以所求的截面五边形 的周长 ············································································17分 高二数学参考答案 第8 页 共8页 学学学科科科网网网(((北北北京京京)))股股股份份份有有有限限限公公公司司司