文档内容
2024~2025 学年度上期高 2025届半期考试
高三数学试卷参考答案
一、单选题
DABC DBCC
二、多选题
9.ABD 10.AC 11. BCD
三、填空题
12. x N,x 2 1
0 0
13. (x3)2 ( y 2 ) 2 25
2
14.
2
四、解答题
1 3 1
15.【解】(I) 3sinCcosCcos2C sin2C cos2C 1,即sin(2C )1,
2, 2 2 6
0C ,2C ,解得C
。
(6分)
6 2 3
a b
(II)m与n共线,sinB2sinA0。由正弦定理 ,得b 2a①,
sin A sinB
a 3
c 3,由余弦定理,得9 a 2 b 2 2abcos ②,联立①②, (13分)
3 b 2 3
16.【解】(I)由频率估计概率可得
甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,
故答案为0.4 (5分)
(II)设甲获得优秀为事件A ,乙获得优秀为事件A ,丙获得优秀为事件A
1 2 3
3
P(X 0) P(A A A )0.60.50.5 ,
1 2 3 20
P(X 1) P(A A A )P(A A A )P(A A A )
1 2 3 1 2 3 1 2 3
8
0.40.50.50.60.50.50.60.50.5 ,
20
P(X 2) P(A A A )P(A A A )P(A A A )
1 2 3 1 2 3 1 2 3
7
0.40.50.50.40.50.50.60.50.5 ,
20
2
P(X 3) P(A A A )0.40.50.5 , (11分)
1 2 3 20
∴X的分布列为
X 0 1 2 3
3 8 7 2
P
20 20 20 20
{#{QQABZYIEggiIAAIAAAhCQQGCCACQkhAAASgOgAAMMAABSAFABAA=}#}{#{QQABZYIEggiIAAIAAAhCQQGCCACQkhAAASgOgAAMMAABSAFABAA=}#}2 2y 2x
解得M(0, 0 ),N( 0 ,0)
x 2 2 y 2
0 0
1 1 2x 2 2y
四边形ABNM 的面积S AN BM (2 2 0 )(2 0 )
2 2 y 2 x 2 2
0 0
2y x 2 2 2y x 2 2 ( 2y x 2 2)2
2( 0 0 )( 0 0 ) 2 0 0
y 2 x 2 2 (y 2)(x 2 2)
0 0 0 0
2y 2 x 2 84 2x 8y 2 2x y
2 0 0 0 0 0 0
(y 2)(x 2 2)
0 0
由点P在椭圆上,x 2 2 y 2 8
0 0
164 2x 8y 2 2x y 4 2(4 22x 2 2y x y )
2 0 0 0 0 0 0 0 0
(y 2)(x 2 2) (y 2)(x 2 2)
0 0 0 0
4 2(y 2)(x 2 2)
0 0 4 2 (11分)
(y 2)(x 2 2)
0 0
②解:S S S S 4 2
PMN PAB 四边形ABNM PAB
即需求出S 最 大 值 即 可
PAB
x 2y 2 2
AB:x 2y2 2 0,椭圆三象限的点P到AB的距离d 0 0
3
1
S AB d x 2y 2 2 x 2y 2 2
PAB 2 0 0 0 0
x 2 2 y 2 8
0 0
(x 2y ) 2
(x 2y ) 2 82x 2y 8 0 0 (x 2y ) 2 16
0 0 0 0 2 0 0
x 2y 2 2 42 2 此时x 2y ,P(2, 2)
0 0 0 0
S 最 大 值 为 4 2 2 PMN 面积最大值为42 2 (17分)
PAB
注:此问也可用参数方程求解,酌情给分
19.【解】(I)当a 0时, f(x)ex x1 f /(x)ex 1
当x0时,ex 1, f /(x)0, f(x)单调递增
当x0时,ex 1, f /(x)0, f(x)单调递减
f(x) f(0)0 得证 (3分)
(II)法一:由 f(x)ex ax2 x1, f /(x)ex 2ax1, f //(x)ex 2a
1
①当a 时,x0,ex 1, f //(x)0, f /(x)单调递增, f / ( x ) f /(0)0,
2
1
f(x)单调递增, f(x) f(0)0,a 成立;
2
1
②当a 时,当x(0,ln2a),f //(x)0, f /(x)单调递减,f / ( x ) f /(0)0,
2
1
f(x)单调递减, f(x) f(0)0,与条件矛盾,a 不成立;
2
{#{QQABZYIEggiIAAIAAAhCQQGCCACQkhAAASgOgAAMMAABSAFABAA=}#}1
综上所述:a (8分)
2
ex x1 ex x1
法二:由 f(x)0,即a 成立,设u(x)
x2 x2
(x2)ex x2
u/(x) ,设k(x)(x2)ex x2,k/(x)(x1)ex 1
x3
k//(x) xex 0,k/(x)单调递增,k/ ( x ) k /(0)0,k(x)单调递增
k(x)k(0)0即u/(x)0,u(x)单调递增,u(x)u(0)
ex x 1 e x 1 e x 1 1
由洛必达法则lim lim l i m ,a (8分)
x2 2x 2 2 2
x0 x0 x0
ex 1 xex e x 2x1
(Ⅲ)g(x) 2lnx,则g/(x)
x x2
设h(x) xex e x 2x1,则h/ ( x ) x ex 2,又因h//(x)(x1)ex 0
h /(x) xex 2在(0,)单调递增
又h/ ( 0 ) h /(1)(2)(e2)0
2
x (0,1),使得h/(x )0,即ex 0 ①
0 0 x
0
且x(0,x ),h/(x)0,h(x)单调递减; x ( x , 1 ) , h/(x)0,h(x)单调递增
0 0
2
h(x) h(x ) x ex 0 ex 0 2x 1,由①得h(x )3 2x h(0)0
min 0 0 0 0 x 0
0
3 1 3
又h(1)10,h( ) e2 20,
2 2
3 2x 1
x (1,),使得h(x )0,即xex 1 ex 1 2x 10,即ex 1 1
1 2 1 1 1 x 1
1
且x(0,x ),h(x)0,g(x)单调递减;x(x,),h(x)0,g(x)单调递增
1 1
ex 1 1 1
g(x) g(x ) 2lnx 2lnx ,
min 1 x 1 x 1 1
1 1
3
x (1,),g(x ) g(1)e1 (13分)
1 2 1
1
再设(x) 2lnx,易证(x)在(0,)单调递减
x1
3 3 3
x (1,),(x )也即g(x )大于( )22ln
1 2 1 1 2 2
3 23 3 17 17 3
要证22ln ,即证ln ,又即证e40
2 20 2 40 2
1
由(II)问 ex 1x x 2,
2
17 17 1 17 4849 4800 3
e 40 1 ( ) 2 得证 (17分)
40 2 40 3200 3200 2
{#{QQABZYIEggiIAAIAAAhCQQGCCACQkhAAASgOgAAMMAABSAFABAA=}#}