当前位置:首页>文档>专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)

专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)

  • 2026-02-13 19:52:36 2026-02-13 19:52:36

文档预览

专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)
专题03导数及其应用(选填题)(解析版)_赠送:2008-2024全套高考真题_高考数学真题_送高考数学五年真题(2019-2023)分项汇编(全国通用)

文档信息

文档格式
docx
文档大小
1.398 MB
文档页数
18 页
上传时间
2026-02-13 19:52:36

文档内容

五年(2019-2023)年高考真题分项汇编 专题 03 导数及应用(选填题) 函数导数应用是高考必考知识点 考点 01 利用导数求函数单调性,极值最值 一、单选题 1.(2023年全国新高考Ⅱ卷)已知函数 在区间 上单调递增,则a的最小值为( ). A. B.e C. D. 【答案】C 【分析】根据 在 上恒成立,再根据分参求最值即可求出. 【详解】依题可知, 在 上恒成立,显然 ,所以 , 设 ,所以 ,所以 在 上单调递增, ,故 ,即 ,即a的最小值为 . 故选:C. 2.(2021年全国新高考Ⅰ卷)若过点 可以作曲线 的两条切线,则( ) A. B. C. D. 【答案】D 【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定 结果;解法二:画出曲线 的图象,根据直观即可判定点 在曲线下方和 轴上方时才可以作出两条切线. 【详解】在曲线 上任取一点 ,对函数 求导得 , 所以,曲线 在点 处的切线方程为 ,即 , 由题意可知,点 在直线 上,可得 , 令 ,则 . 当 时, ,此时函数 单调递增, 当 时, ,此时函数 单调递减, 所以, , 由题意可知,直线 与曲线 的图象有两个交点,则 , 当 时, ,当 时, ,作出函数 的图象如下图所示: 由图可知,当 时,直线 与曲线 的图象有两个交点. 故选:D. 解法二:画出函数曲线 的图象如图所示,根据直观即可判定点 在曲线下方和 轴上方时才可以 作出两条切线.由此可知 . 故选:D. 3.(2020年全国高考Ⅰ卷)函数 的图像在点 处的切线方程为( )A. B. C. D. 【答案】B 【分析】求得函数 的导数 ,计算出 和 的值,可得出所求切线的点斜式方程,化简 即可. 【详解】 , , , , 因此,所求切线的方程为 ,即 . 故选:B. 【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题 4.(2020年全国高考Ⅲ卷)若直线l与曲线y= 和x2+y2= 都相切,则l的方程为( ) A.y=2x+1 B.y=2x+ C.y= x+1 D.y= x+ 【答案】D 【详解】设直线 在曲线 上的切点为 ,则 , 函数 的导数为 ,则直线 的斜率 , 设直线 的方程为 ,即 , 由于直线 与圆 相切,则 , 两边平方并整理得 ,解得 , (舍), 则直线 的方程为 ,即 .故选:D. 5.(2019年全国高考Ⅲ卷)已知曲线 在点 处的切线方程为 ,则( ) A. B. C. D. 【答案】D 【解析】通过求导数,确定得到切线斜率的表达式,求得 ,将点的坐标代入直线方程,求得 . 【详解】详解: , 将 代入 得 ,故选D.【点睛】本题关键得到含有a,b的等式,利用导数几何意义和点在曲线上得到方程关系. 二、填空题 6.(2023·全国乙卷)设 ,若函数 在 上单调递增,则a的取值范围是 ______. 【答案】 【分析】原问题等价于 恒成立,据此将所得的不等式进行恒等变形,可 得 ,由右侧函数的单调性可得实数 的二次不等式,求解二次不等式后可确定实数 的取值范围. 【详解】由函数的解析式可得 在区间 上恒成立, 则 ,即 在区间 上恒成立, 故 ,而 ,故 , 故 即 ,故 , 结合题意可得实数 的取值范围是 . 故答案为: . 7.(2022 全国乙卷)已知 和 分别是函数 ( 且 )的极小值点和极大 值点.若 ,则a的取值范围是____________. 【答案】 【分析】法一:依题可知,方程 的两个根为 ,即函数 与函数 的图 象有两个不同的交点,构造函数 ,利用指数函数的图象和图象变换得到 的图象,利用 导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案. 【详解】[方法一]:【最优解】转化法,零点的问题转为函数图象的交点 因为 ,所以方程 的两个根为 , 即方程 的两个根为 , 即函数 与函数 的图象有两个不同的交点,因为 分别是函数 的极小值点和极大值点, 所以函数 在 和 上递减,在 上递增, 所以当时 , ,即 图象在 上方 当 时, ,即 图象在 下方 ,图象显然不符合题意,所以 . 令 ,则 , 设过原点且与函数 的图象相切的直线的切点为 , 则切线的斜率为 ,故切线方程为 , 则有 ,解得 ,则切线的斜率为 , 因为函数 与函数 的图象有两个不同的交点, 所以 ,解得 ,又 ,所以 , 综上所述, 的取值范围为 . [方法二]:【通性通法】构造新函数,二次求导 =0的两个根为 因为 分别是函数 的极小值点和极大值点, 所以函数 在 和 上递减,在 上递增, 设函数 ,则 , 若 ,则 在 上单调递增,此时若 ,则 在 上单调递减,在 上单调递增,此时若有 和 分别是函数 且 的极小值点和极大值点,则 ,不符合题意; 若 ,则 在 上单调递减,此时若 ,则 在 上单调递增,在 上单调递减,令 ,则 ,此时若有 和 分别是函数 且 的极小值点和极大值点,且 ,则需满足 , ,即 故 ,所以 . 8.(2022年全国新高考Ⅰ卷)若曲线 有两条过坐标原点的切线,则a的取值范围是 ________________. 【答案】 【分析】设出切点横坐标 ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于 的方程, 根据此方程应有两个不同的实数根,求得 的取值范围. 【详解】∵ ,∴ , 设切点为 ,则 ,切线斜率 , 切线方程为: , ∵切线过原点,∴ , 整理得: , ∵切线有两条,∴ ,解得 或 , ∴ 的取值范围是 , 故答案为: 9.(2021·全国甲卷)曲线 在点 处的切线方程为__________. 【答案】 【分析】先验证点在曲线上,再求导,代入切线方程公式即可. 【详解】由题,当 时, ,故点在曲线上. 求导得: ,所以 . 故切线方程为 . 故答案为: . 10.(2021年全国新高考Ⅰ卷)函数 的最小值为______. 【答案】1【分析】由解析式知 定义域为 ,讨论 、 、 ,并结合导数研究的单调性, 即可求 最小值. 【详解】由题设知: 定义域为 , ∴当 时, ,此时 单调递减; 当 时, ,有 ,此时 单调递减; 当 时, ,有 ,此时 单调递增; 又 在各分段的界点处连续, ∴综上有: 时, 单调递减, 时, 单调递增; ∴ 故答案为:1. 三、双空题 11.(2022年全国高考Ⅱ卷)曲线 过坐标原点的两条切线的方程为____________,____________. 【答案】 【详解】[方法一]:化为分段函数,分段求 分 和 两种情况,当 时设切点为 ,求出函数 导函数,即可求出切线的斜率,从而 表示出切线方程,再根据切线过坐标原点求出 ,即可求出切线方程,当 时同理可得; 解: 因为 , 当 时 ,设切点为 ,由 ,所以 ,所以切线方程为 , 又切线过坐标原点,所以 ,解得 ,所以切线方程为 ,即 ; 当 时 ,设切点为 ,由 ,所以 ,所以切线方程为 , 又切线过坐标原点,所以 ,解得 ,所以切线方程为 ,即 ; 故答案为: ; [方法二]:根据函数的对称性,数形结合 当 时 ,设切点为 ,由 ,所以 ,所以切线方程为 ,又切线过坐标原点,所以 ,解得 ,所以切线方程为 ,即 ;因为 是偶函数,图象为: 所以当 时的切线,只需找到 关于y轴的对称直线 即可. [方法三]:因为 , 当 时 ,设切点为 ,由 ,所以 ,所以切线方程为 , 又切线过坐标原点,所以 ,解得 ,所以切线方程为 ,即 ; 当 时 ,设切点为 ,由 ,所以 ,所以切线方程为 , 又切线过坐标原点,所以 ,解得 ,所以切线方程为 ,即 ; 故答案为: ; . 考点 02 构造函数利用导数求单调性比较大小 一、单选题 1.(2022·全国甲卷)已知 ,则( ) A. B. C. D. 【答案】A 【分析】由 结合三角函数的性质可得 ;构造函数 ,利用导数可 得 ,即可得解.【详解】[方法一]:构造函数 因为当 故 ,故 ,所以 ; 设 , ,所以 在 单调递增, 故 ,所以 , 所以 ,所以 ,故选A [方法二]:不等式放缩 因为当 , 取 得: ,故 ,其中 ,且 当 时, ,及 此时 , 故 ,故 所以 ,所以 ,故选A [方法三]:泰勒展开 设 ,则 , , ,计算得 ,故选A. [方法四]:构造函数 因为 ,因为当 ,所以 ,即 ,所以 ;设 , ,所以 在 单调递增,则 ,所以 ,所以 ,所以 , 故选:A. [方法五]:【最优解】不等式放缩 因为 ,因为当 ,所以 ,即 ,所以 ;因为当 ,取 得 ,故 ,所以 . 故选:A. 【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通 法; 方法5:利用二倍角公式以及不等式 放缩,即可得出大小关系,属于最优解. 2.(2022年全国新高考Ⅰ卷)设 ,则( ) A. B. C. D. 【答案】C 【分析】构造函数 , 导数判断其单调性,由此确定 的大小. 【详解】方法一:构造法 设 ,因为 , 当 时, ,当 时 , 所以函数 在 单调递减,在 上单调递增, 所以 ,所以 ,故 ,即 , 所以 ,所以 ,故 ,所以 , 故 , 设 ,则 , 令 , , 当 时, ,函数 单调递减, 当 时, ,函数 单调递增, 又 , 所以当 时, ,所以当 时, ,函数 单调递增, 所以 ,即 ,所以 故选:C. 方法二:比较法 解: , , , ① , 令 则 , 故 在 上单调递减, 可得 ,即 ,所以 ; ② , 令 则 , 令 ,所以 , 所以 在 上单调递增,可得 ,即 , 所以 在 上单调递增,可得 ,即 ,所以 故 3.(2021·全国乙卷)设 , , .则( ) A. B. C. D. 【答案】B 【分析】利用对数的运算和对数函数的单调性不难对a,b的大小作出判定,对于a与c,b与c的大小关系, 将0.01换成x,分别构造函数 , ,利用导数分析其在 0的右侧包括0.01的较小范围内的单调性,结合f(0)=0,g(0)=0即可得出a与c,b与c的大小关系. 【详解】[方法一]: , 所以 ; 下面比较 与 的大小关系. 记 ,则 , , 由于所以当00时, , 所以 ,即函数 在[0,+∞)上单调递减,所以 ,即 ,即 b