文档内容
五年(2019-2023)年高考真题分项汇编
专题 03 导数及应用(选填题)
函数导数应用是高考必考知识点
考点 01 利用导数求函数单调性,极值最值
一、单选题
1.(2023年全国新高考Ⅱ卷)已知函数 在区间 上单调递增,则a的最小值为( ).
A. B.e C. D.
【答案】C
【分析】根据 在 上恒成立,再根据分参求最值即可求出.
【详解】依题可知, 在 上恒成立,显然 ,所以 ,
设 ,所以 ,所以 在 上单调递增,
,故 ,即 ,即a的最小值为 .
故选:C.
2.(2021年全国新高考Ⅰ卷)若过点 可以作曲线 的两条切线,则( )
A. B.
C. D.
【答案】D
【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定
结果;解法二:画出曲线 的图象,根据直观即可判定点 在曲线下方和 轴上方时才可以作出两条切线.
【详解】在曲线 上任取一点 ,对函数 求导得 ,
所以,曲线 在点 处的切线方程为 ,即 ,
由题意可知,点 在直线 上,可得 ,
令 ,则 .
当 时, ,此时函数 单调递增,
当 时, ,此时函数 单调递减,
所以, ,
由题意可知,直线 与曲线 的图象有两个交点,则 ,
当 时, ,当 时, ,作出函数 的图象如下图所示:
由图可知,当 时,直线 与曲线 的图象有两个交点.
故选:D.
解法二:画出函数曲线 的图象如图所示,根据直观即可判定点 在曲线下方和 轴上方时才可以
作出两条切线.由此可知 .
故选:D.
3.(2020年全国高考Ⅰ卷)函数 的图像在点 处的切线方程为( )A. B.
C. D.
【答案】B
【分析】求得函数 的导数 ,计算出 和 的值,可得出所求切线的点斜式方程,化简
即可.
【详解】 , , , ,
因此,所求切线的方程为 ,即 .
故选:B.
【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题
4.(2020年全国高考Ⅲ卷)若直线l与曲线y= 和x2+y2= 都相切,则l的方程为( )
A.y=2x+1 B.y=2x+ C.y= x+1 D.y= x+
【答案】D
【详解】设直线 在曲线 上的切点为 ,则 ,
函数 的导数为 ,则直线 的斜率 ,
设直线 的方程为 ,即 ,
由于直线 与圆 相切,则 ,
两边平方并整理得 ,解得 , (舍),
则直线 的方程为 ,即 .故选:D.
5.(2019年全国高考Ⅲ卷)已知曲线 在点 处的切线方程为 ,则( )
A. B. C. D.
【答案】D
【解析】通过求导数,确定得到切线斜率的表达式,求得 ,将点的坐标代入直线方程,求得 .
【详解】详解:
,
将 代入 得 ,故选D.【点睛】本题关键得到含有a,b的等式,利用导数几何意义和点在曲线上得到方程关系.
二、填空题
6.(2023·全国乙卷)设 ,若函数 在 上单调递增,则a的取值范围是
______.
【答案】
【分析】原问题等价于 恒成立,据此将所得的不等式进行恒等变形,可
得 ,由右侧函数的单调性可得实数 的二次不等式,求解二次不等式后可确定实数
的取值范围.
【详解】由函数的解析式可得 在区间 上恒成立,
则 ,即 在区间 上恒成立,
故 ,而 ,故 ,
故 即 ,故 ,
结合题意可得实数 的取值范围是 .
故答案为: .
7.(2022 全国乙卷)已知 和 分别是函数 ( 且 )的极小值点和极大
值点.若 ,则a的取值范围是____________.
【答案】
【分析】法一:依题可知,方程 的两个根为 ,即函数 与函数 的图
象有两个不同的交点,构造函数 ,利用指数函数的图象和图象变换得到 的图象,利用
导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.
【详解】[方法一]:【最优解】转化法,零点的问题转为函数图象的交点
因为 ,所以方程 的两个根为 ,
即方程 的两个根为 ,
即函数 与函数 的图象有两个不同的交点,因为 分别是函数 的极小值点和极大值点,
所以函数 在 和 上递减,在 上递增,
所以当时 , ,即 图象在 上方
当 时, ,即 图象在 下方
,图象显然不符合题意,所以 .
令 ,则 ,
设过原点且与函数 的图象相切的直线的切点为 ,
则切线的斜率为 ,故切线方程为 ,
则有 ,解得 ,则切线的斜率为 ,
因为函数 与函数 的图象有两个不同的交点,
所以 ,解得 ,又 ,所以 ,
综上所述, 的取值范围为 .
[方法二]:【通性通法】构造新函数,二次求导
=0的两个根为
因为 分别是函数 的极小值点和极大值点,
所以函数 在 和 上递减,在 上递增,
设函数 ,则 ,
若 ,则 在 上单调递增,此时若 ,则 在
上单调递减,在 上单调递增,此时若有 和 分别是函数
且 的极小值点和极大值点,则 ,不符合题意;
若 ,则 在 上单调递减,此时若 ,则 在 上单调递增,在 上单调递减,令 ,则 ,此时若有 和 分别是函数 且
的极小值点和极大值点,且 ,则需满足 , ,即
故 ,所以 .
8.(2022年全国新高考Ⅰ卷)若曲线 有两条过坐标原点的切线,则a的取值范围是
________________.
【答案】
【分析】设出切点横坐标 ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于 的方程,
根据此方程应有两个不同的实数根,求得 的取值范围.
【详解】∵ ,∴ ,
设切点为 ,则 ,切线斜率 ,
切线方程为: ,
∵切线过原点,∴ ,
整理得: ,
∵切线有两条,∴ ,解得 或 ,
∴ 的取值范围是 ,
故答案为:
9.(2021·全国甲卷)曲线 在点 处的切线方程为__________.
【答案】
【分析】先验证点在曲线上,再求导,代入切线方程公式即可.
【详解】由题,当 时, ,故点在曲线上.
求导得: ,所以 .
故切线方程为 .
故答案为: .
10.(2021年全国新高考Ⅰ卷)函数 的最小值为______.
【答案】1【分析】由解析式知 定义域为 ,讨论 、 、 ,并结合导数研究的单调性,
即可求 最小值.
【详解】由题设知: 定义域为 ,
∴当 时, ,此时 单调递减;
当 时, ,有 ,此时 单调递减;
当 时, ,有 ,此时 单调递增;
又 在各分段的界点处连续,
∴综上有: 时, 单调递减, 时, 单调递增;
∴
故答案为:1.
三、双空题
11.(2022年全国高考Ⅱ卷)曲线 过坐标原点的两条切线的方程为____________,____________.
【答案】
【详解】[方法一]:化为分段函数,分段求
分 和 两种情况,当 时设切点为 ,求出函数 导函数,即可求出切线的斜率,从而
表示出切线方程,再根据切线过坐标原点求出 ,即可求出切线方程,当 时同理可得;
解: 因为 ,
当 时 ,设切点为 ,由 ,所以 ,所以切线方程为 ,
又切线过坐标原点,所以 ,解得 ,所以切线方程为 ,即 ;
当 时 ,设切点为 ,由 ,所以 ,所以切线方程为
,
又切线过坐标原点,所以 ,解得 ,所以切线方程为 ,即 ;
故答案为: ;
[方法二]:根据函数的对称性,数形结合
当 时 ,设切点为 ,由 ,所以 ,所以切线方程为 ,又切线过坐标原点,所以 ,解得 ,所以切线方程为 ,即 ;因为
是偶函数,图象为:
所以当 时的切线,只需找到 关于y轴的对称直线 即可.
[方法三]:因为 ,
当 时 ,设切点为 ,由 ,所以 ,所以切线方程为 ,
又切线过坐标原点,所以 ,解得 ,所以切线方程为 ,即 ;
当 时 ,设切点为 ,由 ,所以 ,所以切线方程为
,
又切线过坐标原点,所以 ,解得 ,所以切线方程为 ,即 ;
故答案为: ; .
考点 02 构造函数利用导数求单调性比较大小
一、单选题
1.(2022·全国甲卷)已知 ,则( )
A. B. C. D.
【答案】A
【分析】由 结合三角函数的性质可得 ;构造函数 ,利用导数可
得 ,即可得解.【详解】[方法一]:构造函数
因为当
故 ,故 ,所以 ;
设 ,
,所以 在 单调递增,
故 ,所以 ,
所以 ,所以 ,故选A
[方法二]:不等式放缩
因为当 ,
取 得: ,故
,其中 ,且
当 时, ,及
此时 ,
故 ,故
所以 ,所以 ,故选A
[方法三]:泰勒展开
设 ,则 , ,
,计算得 ,故选A.
[方法四]:构造函数
因为 ,因为当 ,所以 ,即 ,所以 ;设
, ,所以 在 单调递增,则 ,所以 ,所以 ,所以 ,
故选:A.
[方法五]:【最优解】不等式放缩
因为 ,因为当 ,所以 ,即 ,所以 ;因为当
,取 得 ,故 ,所以 .
故选:A.
【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通
法;
方法5:利用二倍角公式以及不等式 放缩,即可得出大小关系,属于最优解.
2.(2022年全国新高考Ⅰ卷)设 ,则( )
A. B. C. D.
【答案】C
【分析】构造函数 , 导数判断其单调性,由此确定 的大小.
【详解】方法一:构造法
设 ,因为 ,
当 时, ,当 时 ,
所以函数 在 单调递减,在 上单调递增,
所以 ,所以 ,故 ,即 ,
所以 ,所以 ,故 ,所以 ,
故 ,
设 ,则 ,
令 , ,
当 时, ,函数 单调递减,
当 时, ,函数 单调递增,
又 ,
所以当 时, ,所以当 时, ,函数 单调递增,
所以 ,即 ,所以
故选:C.
方法二:比较法
解: , , ,
① ,
令
则 ,
故 在 上单调递减,
可得 ,即 ,所以 ;
② ,
令
则 ,
令 ,所以 ,
所以 在 上单调递增,可得 ,即 ,
所以 在 上单调递增,可得 ,即 ,所以
故
3.(2021·全国乙卷)设 , , .则( )
A. B. C. D.
【答案】B
【分析】利用对数的运算和对数函数的单调性不难对a,b的大小作出判定,对于a与c,b与c的大小关系,
将0.01换成x,分别构造函数 , ,利用导数分析其在
0的右侧包括0.01的较小范围内的单调性,结合f(0)=0,g(0)=0即可得出a与c,b与c的大小关系.
【详解】[方法一]:
,
所以 ;
下面比较 与 的大小关系.
记 ,则 , ,
由于所以当00时, ,
所以 ,即函数 在[0,+∞)上单调递减,所以 ,即 ,即
b