当前位置:首页>文档>2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学

2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学

  • 2026-02-14 02:36:28 2026-02-14 02:36:28

文档预览

2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学
2024届福建省泉州市普通高中毕业班质量监测(三)数学答案_2024年3月_013月合集_2024届福建省泉州市普通高中毕业班质量监测三_2024届福建省泉州市普通高中毕业班质量监测(三)数学

文档信息

文档格式
pdf
文档大小
0.618 MB
文档页数
16 页
上传时间
2026-02-14 02:36:28

文档内容

保密★使用前 泉州市 2024 届高中毕业班质量监测(三) 2024.03 高 三 数 学 本试卷共19题,满分150分,共8页。考试用时120分钟。 一、选择题答案: 1.B 2.C 3.C 4.B 5. C. 6. D. 7.A 8.D 二、选择题答案: 9.AD 10.BCD 11.ACD 三、填空题:本题共3小题,每小题5分,共15分。 16 12.5 13.x2 4y 14.e3 3 四、解答题:本题共5小题,共77分。解答应写出文字说明,证明过程或演算步骤。 15.(13分) 如图,在三棱锥PABC中,PAPC AB AC2,BC 2 2,E为PC的中点,点F   在PA上,且EF 平面PAB ,PM PB (R). (1)若MF‖平面ABC,求; 1 (2)若 ,求平面PAB 与平面MAC夹角的正弦值. 2 【命题意图】本题考查空间点、直线与平面间的位置关系等知识;考查推理论证、运算求解 等能力;考查数形结合思想、化归与转化思想等;体现应用性、创新性、综合 高三数学试题 第1页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}性,导向对直观想象、数学运算等核心素养的关注. 解法一:(1)依题意得,△PAC 为正三角形,取PA 中点N, 连结CN ,则CN PA , 因为EF 平面PAB ,所以EF PA, EF∥CN,·················································································(2分) 1 又因为E为PC的中点,所以F 为PN 中点,则PF  PA ,·················(3分) 4 因为MF∥平面ABC,MF 平面PAB , 平面PAB 平面ABC AB,即MF∥AB,······································(5分) 1 1 也即PM  PB, . ·······························································(6分) 4 4 (2)因为EF∥CN,则CN 平面PAB ,且CN  3·························(7分) 又因为EF 平面PAB ,所以EF  AB,···········································(8分) 由AB AC 2, BC 2 2 可知BC2  AB2  AC2, 则△ABC为等腰直角三角形,AB AC, 又因为EF 与AC 相交于平面PAC ,所以AB平面PAC ,················· (10分) △PAB 为等腰直角三角形,M 为斜边PB中点,则△PAM 也为等腰直角三角形, 2 取AM 中点H ,则NH  AM ,且NH  , 2 连结CH ,AM 平面CNH , 则AM CH ,CHN为二面角PAM C 的平面角, ·····················(11分) 1 14 在Rt△CHN 中, CH  CN2 NH2  3  2 2 高三数学试题 第2页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}CN 3 42 sinCHN    . 则 CH 14 7 ····················································(13分) 2 解法二: (1)同解法一; (2)因为EF 平面PAB ,所以EF  AB,······································(7分) 由AB AC 2, BC 2 2 可知BC2  AB2  AC2, 则△ABC为等腰直角三角形,AB AC, 取AC 中点O,连结PO,则PO AC, 取BC中点Q,连结OQ,则OQ∥AB, 又因为EF 与AC 相交于平面PAC ,所以AB平面PAC ,···················(9分) 也即OQ 平面PAC , 所以OQ,OC,OP两两相互垂直,以O为原点,OQ,OC,OP所在直线分 别为x轴,y轴,z轴,建立空间直角坐标系. 1 3 1 3 3 A(0,1,0),B(2,1,0),C(0,1,0),P(0,0, 3),E(0, , ),F(0, , ), 2 2 4 4 1 3 1 3 3 3 M(0, , ),AM (1, , ),AC (0,2,0),EF (0, , ),······(10分) 2 2 2 2 4 4 设平面MAC 的一个法向量n(x,y,z),则 nAM 0 , nAC0 ,即  1 3 x y z0,  2 2 取z2,则x 3,  2y0. 所以n( 3,0,2)为平面MAC 的一个法向量. ···································(11分) 3 EFn cosEF,n   2  7 , EF  n 3 7 7 4 1 42 记平面PAB 与平面MAC 夹角为,sin 1  .···················· (13分) 7 7 解法三: (1)因为EF 平面PAB ,所以EF  AB, 高三数学试题 第3页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}由AB AC 2, BC 2 2 可知BC2  AB2  AC2, 则△ABC为等腰直角三角形,AB AC, △PAC 为正三角形,取AC 中点O,连结PO,则PO AC, 取BC中点Q,连结OQ,则OQ∥AB, 又因为EF 与AC 相交于平面PAC , 所以AB平面PAC ,也即OQ 平面PAC , ·································· (3分) 所以OQ,OC,OP两两相互垂直,以O为原点,OQ,OC,OP所在直线分 别为x轴,y轴,z轴,建立空间直角坐标系. 1 3 A(0,1,0),B(2,1,0),C(0,1,0),P(0,0, 3),E(0, , ),PA (0,1, 3), 2 2 ··································································································(4分) 因为MF∥平面ABC,MF 平面PAB , 平面PAB 平面ABC AB,则MF∥AB, ·····································(6分)     因为PM PB ,所以PF PA(0,, 3), F(0,, 3 3),  1 3   EF (0, ,  3),EFPA410, 2 2 1 所以 . ················································································(9分) 4 补充说明:第一小题利用坐标法解答得9分,其中证明AB平面PAC 得3分, 请把这3分的分值写到第二小题的得分栏。 1 3 1 3 3 3 (2)M(0, , ),AM (1, , ),AC (0,2,0),EF (0, , ),(10分) 2 2 2 2 4 4 设平面MAC 的一个法向量n(x,y,z),则 nAM 0 , nAC0 ,即 高三数学试题 第4页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#} 1 3 x y z0,  2 2 取z2,则x 3,  2y0. 所以n( 3,0,2)为平面MAC 的一个法向量. ···································(11分) 3 EFn cosEF,n   2  7 , EF  n 3 7 7 4 1 42 记平面PAB 与平面MAC 夹角为,sin 1  .···················· (13分) 7 7 解法四: (1)同解法一; (2)设点C在平面PAB 的射影为N,则CN 平面PAB , 过点N做NH  AM ,垂足为H ,连结CH ,AM 平面CNH , 则AM CH ,CHN为PAM C 的平面角, 因为EF 平面PAB ,所以EF  AB,··············································(7分) 由AB AC 2, BC 2 2 可知BC2  AB2  AC2, 则△ABC为等腰直角三角形,AB AC, △PAC 为正三角形,取AC 中点O,连结PO,则PO AC, 又因为EF 与AC 相交于平面PAC ,所以AB平面PAC ,···················(9分) ABPO,ABAC A,PO平面ABC 1 1 因为V V ,则 S CN  S PO,所以CN PO 3,(10分) CPAB PACB 3 △PAB 3 △ABC 在△PBC中,PC2, BCBP2 2 , 高三数学试题 第5页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}(2 2)2(2 2)222 3 cosPBC  , 22 22 2 4 CM2 BM2 BC2 2BM BCcosPBC 4,CM 2,······················(11分) 在△MCA中, AM  2 ,ACMC2,△MCA∽△PBC 1 1 1 7 14 S  AM CH  ACMCsinACM  22 ,CH  ,(12分) △AMC 2 2 2 4 2 CN 3 42 sinCHN    . CH 14 7 ·······················································(13分) 2 16.(15分) 淄博烧烤、哈尔滨冬日冰雪、山河四省梦幻联动、鄂了赣饭真湘……,2023年全国各地 的文旅部门在网络上掀起了一波花式创意宣传,带火了各地的文旅市场,很好地推动国内旅 游业的发展.已知某旅游景区在手机APP上推出游客竞答的问卷,题型为单项选择题,每题 均有4个选项,其中有且只有一项是正确选项.对于游客甲,在知道答题涉及的内容的条件 下,可选出唯一的正确选项;在不知道答题涉及的内容的条件下,则随机选择一个选项.已 1 知甲知道答题涉及内容的题数占问卷总题数的 . 3 (1)求甲任选一题并答对的概率; (2)若问卷答题以题组形式呈现,每个题组由2道单项选择题构成,每道选择题答对得2 2 分,答错扣1分,放弃作答得0分.假设对于任意一道题,甲选择作答的概率均为 ,且两 3 题是否选择作答及答题情况互不影响,记每组答题总得分为X . (i)求P(X 4)和P(X 2); (ii)求E(X). 【命题意图】本小题主要考查全概率、独立事件、分布列、数学期望、等基础知识,考查运 算求解、推理论证、数据处理能力,体现综合性、创新性、应用性,导向对发 高三数学试题 第6页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}展数学运算、逻辑推理、数据分析、数学建模等核心素养的关注. 【试题简析】(1)记“甲任选一道题并答对”为事件M ,“甲知道答题涉及内容”为事件A. ········································································································1分 1 2 1 依题意,P(A) ,P(A) ,P(M A)1,P(M A) .·······················2分 3 3 4 因为事件MA与MA互斥,所以P(M)P(MAMA)P(MA)P(MA) (没说明互斥不扣分)3分 ········································································· 1 P(M A)P(A)P(M A)P(A) .·······················(公式1分,结果1分)5分 2 2 1 2 1 1 (2)(ⅰ)P(X 4)     .··················································· 7分 3 2 3 2 9 2 1 2 1 1 P(X 2)     ;··(本小题答对任意一个2分,答对两个3分)8分 3 2 3 2 9 (ⅱ)依题意,随机变量X 2,1,0,1,2,4.·······(部分对1分,全对2分)10分 1 2 1 2 P(X 1)2    ;······························································11分 3 3 2 9 1 1 1 P(X 0)   ;········································································ 12分 3 3 9 2 1 2 1 2 P(X 1)2     ;··························································· 13分 3 2 3 2 9 1 2 1 2 P(X 2)2    ;································································14分 3 3 2 9 1 2 1 2 2 1 2 故E(X)(2) (1) 0 1 2 4  .·······················15分 9 9 9 9 9 9 3 17.(15分) 1 lnx1 (1)已知x[ ,1],求 f(x) 的最大值与最小值; 2 x2 (2)若关于x的不等式lnxax2 1存在唯一的整数解,求实数a的取值范围. 【命题意图】本小题主要考查导数的应用、不等式等基础知识,考查运算求解、推理论证、 数形结合、转化化归等能力,体现综合性、创新性,导向对发展数学运算、逻 辑推理、直观想象等核心素养的关注. 【试题简析】 高三数学试题 第7页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}1 (2lnx1) (1) 因为x[ ,1], f '(x) ,······················································ 1分 2 x3 e 令 f '(x)0,解得x ,··································································2分 e f '(x), f(x)的变化情况如下表所示. 1 e e e x ( , ) ( ,1) 2 e e e f '(x)  0  e f(x) 单调递增 单调递减 2 ········································································································4分 1 e e 所以, f(x)在区间( , )上单调递增,在区间( ,1)上单调递减. 2 e e e e 当x 时, f(x)有极大值 ,也是 f(x)的最大值.·································5分 e 2 1 又因为 f( )44ln2, f(1)1, 2 1 而(44ln2)134ln2lne3ln160 ,所以 f( ) f(1),·····················6分 2 所以 f(1)1为 f(x)的最小值.································································7分 (2) lnx1 解法一:因为x 0,所以不等式lnxax2 1可化为a f(x) .·····················8分 x2 由(1)可知 lnx1 e e f(x) 在区间(0, )上单调递增,在区间( ,)上单调递减. x2 e e e e 因为 f(x)的最大值 f ( )= , f(1)1, ·············································9分 e 2 1 1ln2 1 e f ( )0  f(1), f(2)  f(1),  12 e 4 e e 所以xN*,x1时, f(x)最大,····························(有相应解释即可)10分 所以不等式lnxax2 1即a f (x)存在唯一的整数解只能为1, ······················································(整步只提供图形没有解释扣2分)11分  f(1)a 所以 ,················································································13分 f(2)a 高三数学试题 第8页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}1ln2 ln2e 所以a的取值范围为 a1.(或[ ,1))···································15分 4 4 解法二:令g(x)lnxax2 1(x0),由题意可知g(x)0有唯一整数解,·················8分 12ax2 g'(x) , x 12ax2 当a0时,g'(x) 0,所以g(x)在(0,)单调递增, x 而g(1)1a0,所以g(2)g(1)0,与题意矛盾;································9分 12ax2 2a 2a 当a0时,由g'(x) 0可得x 或x (舍去), x 2a 2a 2a 2a 当x(0, )时,g'(x)0,x( ,)时,g'(x)0, 2a 2a 2a 2a 所以g(x)在(0, ]单调递增,在[ ,)单调递减, 2a 2a 2a 1 所以x 时,g(x)取最大值为ln 2a  ,·····································10分 2a 2 1 e 由题意可知ln 2a  0,解得0a ,········································· 11分 2 2 因为g(1)1a,所以当g(1)1a0即0a1时, 1ln2 由g(x)0有唯一整数解知g(2)ln24a10,解得 a1,·······12分 4 2a 2a 若12 ,由g(x)在(0, ]单调递增知0 g(1) g(2)0 ,矛盾 2a 2a 2a 2a 所以2 ,由g(x)在[ ,)单调递减可知x[2,),g(x)0 2a 2a 1ln2 所以 a1符合题意;······························································ 13分 4 2a 2 当a1时,  ,g(1)1a0, 2a 2 2a 由g(x)在[ ,)单调递减可知x[1,),g(x)g(1)0,不符合题意; 2a ······································································································14分 1ln2 ln2e 综上所述,a的取值范围为 a1.(或[ ,1))··························15分 4 4 18.(17分) (a,b)表示正整数a,b的最大公约数.若{x,x ,,x }{1,2,,m}(k,mN*),且 1 2 k 高三数学试题 第9页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}x{x,x ,,x },(x,m)1,则将k的最大值记为(m),例如:(1)1,(5)4. 1 2 k (1)求(2),(3),(6); (2)已知(m,n)1时,(mn)(m)(n). (i)求(6n); 1 6 (ii)设b  ,数列{b }的前n项和为T ,证明:T  . n 3(6n)1 n n n 25 【命题意图】本小题主要考查等比数列的通项公式与数列求和等基础知识,考查运算求解能 力,考查函数与方程、化归与转化等思想,体现基础性,导向对发展数学运算等 核心素养的关注. 【试题解析】(1)依题可得(m)表示所有不超过正整数m,且与m互质的正整数的个数, 因为与2互质的数为1,所以(2)1;····················································1分 因为与3互质的数为1,2,所以(3)2;·················································2分 因为与6互质的数为1,5,所以(6)2;················································3分 (2)①因为[1,2n]中与2n互质的正整数只有奇数, 所以[1,2n]中与2n互质的正整数个数为2n1,所以(2n)2n1,··················· 5分 又因为[3k2,3k](k 1,2,,3n1)中与3n互质的正整数只有3k2与3k 1两 个,所以  1,3n  中与3n互质的正整数个数为23n1,所以  3n 23n1, ········································································································7分 所以(6n)(2n)(3n)26n1.·····························································9分 1 1 ②解法一:因为b  ,所以b  .···································10分 n 3(6n)1 n 6n 1 1 所以b  .··············································································13分 n 56n1 1 令c  1 ,因为 c n1  56n  1 , n 56n1 c 1 6 n 56n1 1 1 所以数列{c }是以 为首项, 为公比的等比数列.···································14分 n 5 6 高三数学试题 第10页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}1 1 [1( )n] 所以数列{c }的前n项和S  5 6  6 [1( 1 )n].·····························16分 n n 1 25 6 1 6 6 1 1 6 所以T  [1( )n].又因为( )n 0,所以T  .·································17分 n 25 6 6 n 25 1 1 解法二:因为b  ,所以b  .······································10分 n 3(6n)1 n 6n 1 1 6n11 又因为b   , n 6n 1 (6n 1)(6n11) 6 [(6n11)(6n 1)] 所以 6n1 5 6 1 1 ,············13分 b    [  ] n (6n 1)(6n11) (6n 1)(6n11) 5 6n 1 6n11 6 1 1 1 1 1 1 1 1 所以T  [        ], n 5 611 62 1 62 1 63 1 63 1 64 1 6n 1 6n11 ······································································································14分 6 1 1 6 6 1 所以T  [  ],所以T   [ ].································16分 n 5 611 6n11 n 25 5 6n11 1 6 因为 0,所以T  .·······························································17分 6n11 n 25 高三数学试题 第11页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}19.(17分) 已知中心在原点、焦点在x轴上的圆锥曲线E的离心率为2,过E的右焦点F 作垂直于x 轴的直线,该直线被E截得的弦长为6. (1)求E的方程; (2)若面积为3的△ABC的三个顶点均在E上,边BC过F ,边AB过原点,求直线BC的 方程; (3)已知M(1,0),过点T( 1 ,2)的直线l与E在y轴的右侧交于不同的两点P,Q,l上是 2     否存在点S满足TPSQPSTQ,且|SM |2 |SF|213?若存在,求S的坐标,若不存在, 请说明理由. 【命题意图】本小题主要考查双曲线的定义,双曲线的标准方程,直线与双曲线的位置关系 等知识;考查运算求解、逻辑推理等能力;考查数形结合、函数与方程等思想; 体现基础性、综合性与创新性,导向对直观想象、逻辑推理、数学运算等核心 素养的关注. 【试题解析】 (1)圆锥曲线E的离心率为2,故E为双曲线,·············································1分 x2 y2 因为E中心在原点、焦点在x轴上,所以设E的方程为  1(a0,b0), a2 b2 ·····································································································1分 【说明:指出曲线为双曲线,或正确写出曲线的方程形式,均可得1分,但不累计得分】 b2 2b2 令xc,解得y ,所以有 6......① ·······································2分 a a b2 又由离心率为2,得 1 2......②,··················································3分 a2 a2 1 由①②解得 ,··········································································4分 b2 3 y2 所以双曲线E的标准方程是x2  1.··················································4分 3 解法一:(2)设B(x,y ),C(x ,y ) ,由已知,得F2,0,根据直线AB过原点及对称性, 1 1 2 2 高三数学试题 第12页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}1 知S 2S 2 OF  y y c y y 2 y y ,······················5分 ABC BOC 2 1 2 1 2 1 2  y2 x2  1 联立方程,得 3 ,化简整理,得(3t2 1)y2 12ty90,···············6分  xty2  12t y  y    1 2 3t2 1 所以 ,且144t2 36(3t2 1)36t2 360,····················7分  y y  9  1 2 3t2 1 6(t2 1) 所以S 2 y y 2 y  y 24y y 2 3 , ABC 1 2 1 2 1 2 3t2 1 解得 t  3 , ........ 8分【到此可得第8分】 所以直线BC的方程是x 3y20或x 3y20.·····························8分 解法二:(2)设B(x,y ),C(x ,y ) ,由已知,得F2,0,根据直线AB过原点及对称性, 1 1 2 2 1 知S 2S 2  BC d  BC d (其中d为原点O到直线BC的距离), ABC BOC 2 ········································································································5分  y2 x2  1 联立方程, 3 ,化简整理,得(3t2 1)y2 12ty90,··················6分  xty2  12t y  y    1 2 3t2 1 所以 ,且144t2 36(3t2 1)36t2 36,························7分  y y  9  1 2 3t2 1 所以 6(t2 1) BC  1t2 y  y 24y y  1t2 y  y 24y y  1t2  , 1 2 1 2 1 2 1 2 3t2 1 2 6(t2 1) 2 12(t2 1) 又因为d  ,于是S  BC d  1t2   3, 1t2 ABC 3t2 1 1t2 3t2 1 解得 t  3 ,····················································································8分 所以直线BC的方程是x 3y20或x 3y20. 8分 高三数学试题 第13页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}解法一:(3)若直线l斜率不存在,此时直线l与双曲线右支无交点,不合题意, 不满足条件,故直线l斜率存在,··························································· 9分  y2 x2 1  1  3 设直线l方程y2kx ,联立方程,得 ,  2  y2k  x 1     2 化简整理,得  3k2 x2   k2 4k  x   1 k2 2k7   0, 4   0  3k2 0    k24k 则 k23 0 ,·········································································10分  1 k22k7 4 0   k23 1 1 因为 k22k7 k4230恒成立,所以k230,故k24k 0, 4 4 14 解得: k  3,·········································································11分 3  k24k x x  1 2 k23  设Px,y ,Qx ,y ,则由韦达定理,得 1 , 1 1 2 2  k22k7 4 xx   1 2 k23     TP SP 设点S的坐标为x ,y ,由TPSQPSTQ,得  , 0 0 TQ SQ 1 x  则 1 2  x 0 x 1 ,变形得到4xx 2x 1x x 2x 0 ,··················12分 1 x x 1 2 0 1 2 0 x  2 0 2 2 高三数学试题 第14页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}1 k24k k22k7 2k14 将x x  , 4 代入,解得x  ,················13分 1 2 k23 xx  0 4k3 1 2 k23 2k14  1 9k12 【将x  代入y2kx 中,解得y  , 0 4k3  2 0 68k 消去k,得到点S的轨迹为定直线l :3x4y60 上的一段 1 线段(不含线段端点S,S ).·····························································14分】 1 2 2k14 【将x  化为2k(2x 1)3x 14, 0 4k3 0 0  1 将S的坐标x ,y 代入y2kx 中,并化为2k(2x 1)4(y 2), 0 0  2 0 0 故3x 144(y 2),即点S的轨迹为定直线l :3x4y60 上的一段 0 0 1 线段(不含线段端点S,S ).·····························································14分】 1 2 3 因为M(1,0),F(2,0),且|SM |2 |SF|213,记H( ,0), 2  1 5 所以|SM |2 |SF|22|SH |2   13,故|SH | ,即S的轨迹方程为  4 2 3 25 5 (x )2  y2  ,表示以点H 为圆心,半径为 的圆H ,······················15分 2 4 2 3 设直线l 与y轴,x轴分别交于S (0, ),S (2,0),依次作出直线TS ,TS,TS ,TS , 1 3 2 4 3 1 2 4 14 4 且四条直线的斜率分别为:k 7,k  ,k  3,k  , TS3 TS1 3 TS2 TS4 3 因为k k k k ,所以线段SS 是线段S S 的一部分.······················· 16分 TS3 TS1 TS2 TS4 1 2 3 4 3 经检验点S (0, ),S (2,0)均在圆H 内部,所以线段S S 也必在圆H 内部,因此线 3 2 4 3 4     段SS 也必在圆H 内部,所以满足条件TPSQPSTQ的点S始终在圆H 内部, 1 2     故不存在这样的点S,使得TPSQPSTQ,且|SM |2 |SF|213成立.····17分 解法二:(3)若直线l斜率不存在,此时直线l与双曲线右支无交点,不合题意, 不满足条件,故直线l斜率存在,··························································· 9分  y2 x2 1  1  3 设直线l方程y2kx ,联立方程,得 ,化简整理,得  2  y2k  x 1     2 高三数学试题 第15页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#} 0  3k2 0   3k2 x2   k2 4k  x   1 k2 2k7   0,则    k k 2 2   4 3 k 0 ,···············10分 4   1 k22k7 4 0   k23 1 1 因为 k22k7 k4230恒成立,所以k230,故k24k 0, 4 4 14 解得: k  3,·········································································11分 3     TP SP TP SP 由TPSQPSTQ,得  ,且SPQ,假设  ,则 TQ SQ TQ SQ 1 x x  1 2   P  T  T  Q  ,  P  S    S  Q  ,设Px,y ,Qx ,y ,Sx ,y ,则   2 1 , 1 1 2 2 0 0  2 y 1 y 2  1  1 x x  (1) 即 1 2 2 ,·······································································12分  y y 2(1) 1 2  x x x  1 2   0 1 x x x (1) 又 ,所以 1 2 0 ,  y  y 1 y 2 y 1 y 2 y 0 (1)  0 1  y2  y2 x2  1 1 x2  1 1  1 3  1 3 联立方程 ,得 ,两式相减,得  y 2  2y 2 x 2  2 1 2x 2  2 2  2 3  2 3 1 (x x )(x x ) (y y )(y y )12,将上述等式代入,得 1 2 1 2 3 1 2 1 2 1 1 x (1) (1) y (1)2(1)(1)(1),·····························13分 0 2 3 0 1 2 即 x  y 1,亦即3x 4y 60,故点S为定直线l :3x4y60 上的 2 0 3 0 0 0 1 一段线段(挖掉左右端点S,S ).··························································14分 1 2 以下同解法一. 高三数学试题 第16页(共8页) {#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}