文档内容
保密★使用前
泉州市 2024 届高中毕业班质量监测(三)
2024.03
高 三 数 学
本试卷共19题,满分150分,共8页。考试用时120分钟。
一、选择题答案:
1.B 2.C 3.C 4.B 5. C. 6. D. 7.A 8.D
二、选择题答案:
9.AD 10.BCD 11.ACD
三、填空题:本题共3小题,每小题5分,共15分。
16
12.5 13.x2 4y 14.e3
3
四、解答题:本题共5小题,共77分。解答应写出文字说明,证明过程或演算步骤。
15.(13分)
如图,在三棱锥PABC中,PAPC AB AC2,BC 2 2,E为PC的中点,点F
在PA上,且EF 平面PAB ,PM PB (R).
(1)若MF‖平面ABC,求;
1
(2)若 ,求平面PAB 与平面MAC夹角的正弦值.
2
【命题意图】本题考查空间点、直线与平面间的位置关系等知识;考查推理论证、运算求解
等能力;考查数形结合思想、化归与转化思想等;体现应用性、创新性、综合
高三数学试题 第1页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}性,导向对直观想象、数学运算等核心素养的关注.
解法一:(1)依题意得,△PAC 为正三角形,取PA 中点N,
连结CN ,则CN PA ,
因为EF 平面PAB ,所以EF PA,
EF∥CN,·················································································(2分)
1
又因为E为PC的中点,所以F 为PN 中点,则PF PA ,·················(3分)
4
因为MF∥平面ABC,MF 平面PAB ,
平面PAB 平面ABC AB,即MF∥AB,······································(5分)
1 1
也即PM PB, . ·······························································(6分)
4 4
(2)因为EF∥CN,则CN 平面PAB ,且CN 3·························(7分)
又因为EF 平面PAB ,所以EF AB,···········································(8分)
由AB AC 2, BC 2 2 可知BC2 AB2 AC2,
则△ABC为等腰直角三角形,AB AC,
又因为EF 与AC 相交于平面PAC ,所以AB平面PAC ,················· (10分)
△PAB 为等腰直角三角形,M 为斜边PB中点,则△PAM 也为等腰直角三角形,
2
取AM 中点H ,则NH AM ,且NH ,
2
连结CH ,AM 平面CNH ,
则AM CH ,CHN为二面角PAM C 的平面角, ·····················(11分)
1 14
在Rt△CHN 中, CH CN2 NH2 3
2 2
高三数学试题 第2页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}CN 3 42
sinCHN .
则 CH 14 7 ····················································(13分)
2
解法二:
(1)同解法一;
(2)因为EF 平面PAB ,所以EF AB,······································(7分)
由AB AC 2, BC 2 2 可知BC2 AB2 AC2,
则△ABC为等腰直角三角形,AB AC,
取AC 中点O,连结PO,则PO AC,
取BC中点Q,连结OQ,则OQ∥AB,
又因为EF 与AC 相交于平面PAC ,所以AB平面PAC ,···················(9分)
也即OQ 平面PAC ,
所以OQ,OC,OP两两相互垂直,以O为原点,OQ,OC,OP所在直线分
别为x轴,y轴,z轴,建立空间直角坐标系.
1 3 1 3 3
A(0,1,0),B(2,1,0),C(0,1,0),P(0,0, 3),E(0, , ),F(0, , ),
2 2 4 4
1 3 1 3 3 3
M(0, , ),AM (1, , ),AC (0,2,0),EF (0, , ),······(10分)
2 2 2 2 4 4
设平面MAC 的一个法向量n(x,y,z),则 nAM 0 , nAC0 ,即
1 3
x y z0,
2 2 取z2,则x 3,
2y0.
所以n( 3,0,2)为平面MAC 的一个法向量. ···································(11分)
3
EFn
cosEF,n 2 7 ,
EF n 3 7
7
4
1 42
记平面PAB 与平面MAC 夹角为,sin 1 .···················· (13分)
7 7
解法三:
(1)因为EF 平面PAB ,所以EF AB,
高三数学试题 第3页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}由AB AC 2, BC 2 2 可知BC2 AB2 AC2,
则△ABC为等腰直角三角形,AB AC,
△PAC 为正三角形,取AC 中点O,连结PO,则PO AC,
取BC中点Q,连结OQ,则OQ∥AB,
又因为EF 与AC 相交于平面PAC ,
所以AB平面PAC ,也即OQ 平面PAC , ·································· (3分)
所以OQ,OC,OP两两相互垂直,以O为原点,OQ,OC,OP所在直线分
别为x轴,y轴,z轴,建立空间直角坐标系.
1 3
A(0,1,0),B(2,1,0),C(0,1,0),P(0,0, 3),E(0, , ),PA (0,1, 3),
2 2
··································································································(4分)
因为MF∥平面ABC,MF 平面PAB ,
平面PAB 平面ABC AB,则MF∥AB, ·····································(6分)
因为PM PB ,所以PF PA(0,, 3), F(0,, 3 3),
1 3
EF (0, , 3),EFPA410,
2 2
1
所以 . ················································································(9分)
4
补充说明:第一小题利用坐标法解答得9分,其中证明AB平面PAC 得3分,
请把这3分的分值写到第二小题的得分栏。
1 3 1 3 3 3
(2)M(0, , ),AM (1, , ),AC (0,2,0),EF (0, , ),(10分)
2 2 2 2 4 4
设平面MAC 的一个法向量n(x,y,z),则 nAM 0 , nAC0 ,即
高三数学试题 第4页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#} 1 3
x y z0,
2 2 取z2,则x 3,
2y0.
所以n( 3,0,2)为平面MAC 的一个法向量. ···································(11分)
3
EFn
cosEF,n 2 7 ,
EF n 3 7
7
4
1 42
记平面PAB 与平面MAC 夹角为,sin 1 .···················· (13分)
7 7
解法四:
(1)同解法一;
(2)设点C在平面PAB 的射影为N,则CN 平面PAB ,
过点N做NH AM ,垂足为H ,连结CH ,AM 平面CNH ,
则AM CH ,CHN为PAM C 的平面角,
因为EF 平面PAB ,所以EF AB,··············································(7分)
由AB AC 2, BC 2 2 可知BC2 AB2 AC2,
则△ABC为等腰直角三角形,AB AC,
△PAC 为正三角形,取AC 中点O,连结PO,则PO AC,
又因为EF 与AC 相交于平面PAC ,所以AB平面PAC ,···················(9分)
ABPO,ABAC A,PO平面ABC
1 1
因为V V ,则 S CN S PO,所以CN PO 3,(10分)
CPAB PACB 3 △PAB 3 △ABC
在△PBC中,PC2, BCBP2 2 ,
高三数学试题 第5页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}(2 2)2(2 2)222 3
cosPBC ,
22 22 2 4
CM2 BM2 BC2 2BM BCcosPBC 4,CM 2,······················(11分)
在△MCA中, AM 2 ,ACMC2,△MCA∽△PBC
1 1 1 7 14
S AM CH ACMCsinACM 22 ,CH ,(12分)
△AMC
2 2 2 4 2
CN 3 42
sinCHN .
CH 14 7 ·······················································(13分)
2
16.(15分)
淄博烧烤、哈尔滨冬日冰雪、山河四省梦幻联动、鄂了赣饭真湘……,2023年全国各地
的文旅部门在网络上掀起了一波花式创意宣传,带火了各地的文旅市场,很好地推动国内旅
游业的发展.已知某旅游景区在手机APP上推出游客竞答的问卷,题型为单项选择题,每题
均有4个选项,其中有且只有一项是正确选项.对于游客甲,在知道答题涉及的内容的条件
下,可选出唯一的正确选项;在不知道答题涉及的内容的条件下,则随机选择一个选项.已
1
知甲知道答题涉及内容的题数占问卷总题数的 .
3
(1)求甲任选一题并答对的概率;
(2)若问卷答题以题组形式呈现,每个题组由2道单项选择题构成,每道选择题答对得2
2
分,答错扣1分,放弃作答得0分.假设对于任意一道题,甲选择作答的概率均为 ,且两
3
题是否选择作答及答题情况互不影响,记每组答题总得分为X .
(i)求P(X 4)和P(X 2);
(ii)求E(X).
【命题意图】本小题主要考查全概率、独立事件、分布列、数学期望、等基础知识,考查运
算求解、推理论证、数据处理能力,体现综合性、创新性、应用性,导向对发
高三数学试题 第6页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}展数学运算、逻辑推理、数据分析、数学建模等核心素养的关注.
【试题简析】(1)记“甲任选一道题并答对”为事件M ,“甲知道答题涉及内容”为事件A.
········································································································1分
1 2 1
依题意,P(A) ,P(A) ,P(M A)1,P(M A) .·······················2分
3 3 4
因为事件MA与MA互斥,所以P(M)P(MAMA)P(MA)P(MA)
(没说明互斥不扣分)3分
·········································································
1
P(M A)P(A)P(M A)P(A) .·······················(公式1分,结果1分)5分
2
2 1 2 1 1
(2)(ⅰ)P(X 4) .··················································· 7分
3 2 3 2 9
2 1 2 1 1
P(X 2) ;··(本小题答对任意一个2分,答对两个3分)8分
3 2 3 2 9
(ⅱ)依题意,随机变量X 2,1,0,1,2,4.·······(部分对1分,全对2分)10分
1 2 1 2
P(X 1)2 ;······························································11分
3 3 2 9
1 1 1
P(X 0) ;········································································ 12分
3 3 9
2 1 2 1 2
P(X 1)2 ;··························································· 13分
3 2 3 2 9
1 2 1 2
P(X 2)2 ;································································14分
3 3 2 9
1 2 1 2 2 1 2
故E(X)(2) (1) 0 1 2 4 .·······················15分
9 9 9 9 9 9 3
17.(15分)
1 lnx1
(1)已知x[ ,1],求 f(x) 的最大值与最小值;
2 x2
(2)若关于x的不等式lnxax2 1存在唯一的整数解,求实数a的取值范围.
【命题意图】本小题主要考查导数的应用、不等式等基础知识,考查运算求解、推理论证、
数形结合、转化化归等能力,体现综合性、创新性,导向对发展数学运算、逻
辑推理、直观想象等核心素养的关注.
【试题简析】
高三数学试题 第7页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}1 (2lnx1)
(1) 因为x[ ,1], f '(x) ,······················································ 1分
2 x3
e
令 f '(x)0,解得x ,··································································2分
e
f '(x), f(x)的变化情况如下表所示.
1 e e e
x ( , ) ( ,1)
2 e e e
f '(x) 0
e
f(x) 单调递增 单调递减
2
········································································································4分
1 e e
所以, f(x)在区间( , )上单调递增,在区间( ,1)上单调递减.
2 e e
e e
当x 时, f(x)有极大值 ,也是 f(x)的最大值.·································5分
e 2
1
又因为 f( )44ln2, f(1)1,
2
1
而(44ln2)134ln2lne3ln160 ,所以 f( ) f(1),·····················6分
2
所以 f(1)1为 f(x)的最小值.································································7分
(2)
lnx1
解法一:因为x 0,所以不等式lnxax2 1可化为a f(x) .·····················8分
x2
由(1)可知
lnx1 e e
f(x) 在区间(0, )上单调递增,在区间( ,)上单调递减.
x2
e e
e e
因为 f(x)的最大值 f ( )= , f(1)1, ·············································9分
e 2
1 1ln2 1 e
f ( )0 f(1), f(2) f(1), 12
e 4 e e
所以xN*,x1时, f(x)最大,····························(有相应解释即可)10分
所以不等式lnxax2 1即a f (x)存在唯一的整数解只能为1,
······················································(整步只提供图形没有解释扣2分)11分
f(1)a
所以 ,················································································13分
f(2)a
高三数学试题 第8页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}1ln2 ln2e
所以a的取值范围为 a1.(或[ ,1))···································15分
4 4
解法二:令g(x)lnxax2 1(x0),由题意可知g(x)0有唯一整数解,·················8分
12ax2
g'(x) ,
x
12ax2
当a0时,g'(x) 0,所以g(x)在(0,)单调递增,
x
而g(1)1a0,所以g(2)g(1)0,与题意矛盾;································9分
12ax2 2a 2a
当a0时,由g'(x) 0可得x 或x (舍去),
x 2a 2a
2a 2a
当x(0, )时,g'(x)0,x( ,)时,g'(x)0,
2a 2a
2a 2a
所以g(x)在(0, ]单调递增,在[ ,)单调递减,
2a 2a
2a 1
所以x 时,g(x)取最大值为ln 2a ,·····································10分
2a 2
1 e
由题意可知ln 2a 0,解得0a ,········································· 11分
2 2
因为g(1)1a,所以当g(1)1a0即0a1时,
1ln2
由g(x)0有唯一整数解知g(2)ln24a10,解得 a1,·······12分
4
2a 2a
若12 ,由g(x)在(0, ]单调递增知0 g(1) g(2)0 ,矛盾
2a 2a
2a 2a
所以2 ,由g(x)在[ ,)单调递减可知x[2,),g(x)0
2a 2a
1ln2
所以 a1符合题意;······························································ 13分
4
2a 2
当a1时, ,g(1)1a0,
2a 2
2a
由g(x)在[ ,)单调递减可知x[1,),g(x)g(1)0,不符合题意;
2a
······································································································14分
1ln2 ln2e
综上所述,a的取值范围为 a1.(或[ ,1))··························15分
4 4
18.(17分)
(a,b)表示正整数a,b的最大公约数.若{x,x ,,x }{1,2,,m}(k,mN*),且
1 2 k
高三数学试题 第9页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}x{x,x ,,x },(x,m)1,则将k的最大值记为(m),例如:(1)1,(5)4.
1 2 k
(1)求(2),(3),(6);
(2)已知(m,n)1时,(mn)(m)(n).
(i)求(6n);
1 6
(ii)设b ,数列{b }的前n项和为T ,证明:T .
n 3(6n)1 n n n 25
【命题意图】本小题主要考查等比数列的通项公式与数列求和等基础知识,考查运算求解能
力,考查函数与方程、化归与转化等思想,体现基础性,导向对发展数学运算等
核心素养的关注.
【试题解析】(1)依题可得(m)表示所有不超过正整数m,且与m互质的正整数的个数,
因为与2互质的数为1,所以(2)1;····················································1分
因为与3互质的数为1,2,所以(3)2;·················································2分
因为与6互质的数为1,5,所以(6)2;················································3分
(2)①因为[1,2n]中与2n互质的正整数只有奇数,
所以[1,2n]中与2n互质的正整数个数为2n1,所以(2n)2n1,··················· 5分
又因为[3k2,3k](k 1,2,,3n1)中与3n互质的正整数只有3k2与3k 1两
个,所以
1,3n
中与3n互质的正整数个数为23n1,所以 3n 23n1,
········································································································7分
所以(6n)(2n)(3n)26n1.·····························································9分
1 1
②解法一:因为b ,所以b .···································10分
n 3(6n)1 n 6n 1
1
所以b .··············································································13分
n 56n1
1
令c
1
,因为
c
n1
56n
1
,
n 56n1 c 1 6
n
56n1
1 1
所以数列{c }是以 为首项, 为公比的等比数列.···································14分
n 5 6
高三数学试题 第10页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}1 1
[1( )n]
所以数列{c }的前n项和S 5 6 6 [1( 1 )n].·····························16分
n n 1 25 6
1
6
6 1 1 6
所以T [1( )n].又因为( )n 0,所以T .·································17分
n 25 6 6 n 25
1 1
解法二:因为b ,所以b .······································10分
n 3(6n)1 n 6n 1
1 6n11
又因为b ,
n 6n 1 (6n 1)(6n11)
6
[(6n11)(6n 1)]
所以 6n1 5 6 1 1 ,············13分
b [ ]
n (6n 1)(6n11) (6n 1)(6n11) 5 6n 1 6n11
6 1 1 1 1 1 1 1 1
所以T [ ],
n 5 611 62 1 62 1 63 1 63 1 64 1 6n 1 6n11
······································································································14分
6 1 1 6 6 1
所以T [ ],所以T [ ].································16分
n 5 611 6n11 n 25 5 6n11
1 6
因为 0,所以T .·······························································17分
6n11 n 25
高三数学试题 第11页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}19.(17分)
已知中心在原点、焦点在x轴上的圆锥曲线E的离心率为2,过E的右焦点F 作垂直于x
轴的直线,该直线被E截得的弦长为6.
(1)求E的方程;
(2)若面积为3的△ABC的三个顶点均在E上,边BC过F ,边AB过原点,求直线BC的
方程;
(3)已知M(1,0),过点T( 1 ,2)的直线l与E在y轴的右侧交于不同的两点P,Q,l上是
2
否存在点S满足TPSQPSTQ,且|SM |2 |SF|213?若存在,求S的坐标,若不存在,
请说明理由.
【命题意图】本小题主要考查双曲线的定义,双曲线的标准方程,直线与双曲线的位置关系
等知识;考查运算求解、逻辑推理等能力;考查数形结合、函数与方程等思想;
体现基础性、综合性与创新性,导向对直观想象、逻辑推理、数学运算等核心
素养的关注.
【试题解析】
(1)圆锥曲线E的离心率为2,故E为双曲线,·············································1分
x2 y2
因为E中心在原点、焦点在x轴上,所以设E的方程为 1(a0,b0),
a2 b2
·····································································································1分
【说明:指出曲线为双曲线,或正确写出曲线的方程形式,均可得1分,但不累计得分】
b2 2b2
令xc,解得y ,所以有 6......① ·······································2分
a a
b2
又由离心率为2,得 1 2......②,··················································3分
a2
a2 1
由①②解得 ,··········································································4分
b2 3
y2
所以双曲线E的标准方程是x2 1.··················································4分
3
解法一:(2)设B(x,y ),C(x ,y ) ,由已知,得F2,0,根据直线AB过原点及对称性,
1 1 2 2
高三数学试题 第12页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}1
知S 2S 2 OF y y c y y 2 y y ,······················5分
ABC BOC 2 1 2 1 2 1 2
y2
x2 1
联立方程,得 3 ,化简整理,得(3t2 1)y2 12ty90,···············6分
xty2
12t
y y
1 2 3t2 1
所以 ,且144t2 36(3t2 1)36t2 360,····················7分
y y 9
1 2 3t2 1
6(t2 1)
所以S 2 y y 2 y y 24y y 2 3 ,
ABC 1 2 1 2 1 2 3t2 1
解得 t 3 , ........ 8分【到此可得第8分】
所以直线BC的方程是x 3y20或x 3y20.·····························8分
解法二:(2)设B(x,y ),C(x ,y ) ,由已知,得F2,0,根据直线AB过原点及对称性,
1 1 2 2
1
知S 2S 2 BC d BC d (其中d为原点O到直线BC的距离),
ABC BOC 2
········································································································5分
y2
x2 1
联立方程, 3 ,化简整理,得(3t2 1)y2 12ty90,··················6分
xty2
12t
y y
1 2 3t2 1
所以 ,且144t2 36(3t2 1)36t2 36,························7分
y y 9
1 2 3t2 1
所以
6(t2 1)
BC 1t2 y y 24y y 1t2 y y 24y y 1t2 ,
1 2 1 2 1 2 1 2 3t2 1
2 6(t2 1) 2 12(t2 1)
又因为d ,于是S BC d 1t2 3,
1t2 ABC 3t2 1 1t2 3t2 1
解得 t 3 ,····················································································8分
所以直线BC的方程是x 3y20或x 3y20. 8分
高三数学试题 第13页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}解法一:(3)若直线l斜率不存在,此时直线l与双曲线右支无交点,不合题意,
不满足条件,故直线l斜率存在,··························································· 9分
y2
x2 1
1 3
设直线l方程y2kx ,联立方程,得 ,
2 y2k x 1
2
化简整理,得 3k2 x2 k2 4k x 1 k2 2k7 0,
4
0
3k2 0
k24k
则
k23
0
,·········································································10分
1
k22k7
4
0
k23
1 1
因为 k22k7 k4230恒成立,所以k230,故k24k 0,
4 4
14
解得: k 3,·········································································11分
3
k24k
x x
1 2 k23
设Px,y ,Qx ,y ,则由韦达定理,得 1 ,
1 1 2 2
k22k7
4
xx
1 2 k23
TP SP
设点S的坐标为x ,y ,由TPSQPSTQ,得 ,
0 0 TQ SQ
1
x
则 1 2 x 0 x 1 ,变形得到4xx 2x 1x x 2x 0 ,··················12分
1 x x 1 2 0 1 2 0
x 2 0
2 2
高三数学试题 第14页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}1
k24k k22k7 2k14
将x x , 4 代入,解得x ,················13分
1 2 k23 xx 0 4k3
1 2 k23
2k14 1 9k12
【将x 代入y2kx 中,解得y ,
0 4k3 2 0 68k
消去k,得到点S的轨迹为定直线l :3x4y60 上的一段
1
线段(不含线段端点S,S ).·····························································14分】
1 2
2k14
【将x 化为2k(2x 1)3x 14,
0 4k3 0 0
1
将S的坐标x ,y 代入y2kx 中,并化为2k(2x 1)4(y 2),
0 0 2 0 0
故3x 144(y 2),即点S的轨迹为定直线l :3x4y60 上的一段
0 0 1
线段(不含线段端点S,S ).·····························································14分】
1 2
3
因为M(1,0),F(2,0),且|SM |2 |SF|213,记H( ,0),
2
1 5
所以|SM |2 |SF|22|SH |2 13,故|SH | ,即S的轨迹方程为
4 2
3 25 5
(x )2 y2 ,表示以点H 为圆心,半径为 的圆H ,······················15分
2 4 2
3
设直线l 与y轴,x轴分别交于S (0, ),S (2,0),依次作出直线TS ,TS,TS ,TS ,
1 3 2 4 3 1 2 4
14 4
且四条直线的斜率分别为:k 7,k ,k 3,k ,
TS3 TS1 3 TS2 TS4 3
因为k k k k ,所以线段SS 是线段S S 的一部分.······················· 16分
TS3 TS1 TS2 TS4 1 2 3 4
3
经检验点S (0, ),S (2,0)均在圆H 内部,所以线段S S 也必在圆H 内部,因此线
3 2 4 3 4
段SS 也必在圆H 内部,所以满足条件TPSQPSTQ的点S始终在圆H 内部,
1 2
故不存在这样的点S,使得TPSQPSTQ,且|SM |2 |SF|213成立.····17分
解法二:(3)若直线l斜率不存在,此时直线l与双曲线右支无交点,不合题意,
不满足条件,故直线l斜率存在,··························································· 9分
y2
x2 1
1 3
设直线l方程y2kx ,联立方程,得 ,化简整理,得
2 y2k x 1
2
高三数学试题 第15页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#} 0
3k2 0
3k2 x2 k2 4k x 1 k2 2k7 0,则 k k 2 2 4 3 k 0 ,···············10分
4
1
k22k7
4
0
k23
1 1
因为 k22k7 k4230恒成立,所以k230,故k24k 0,
4 4
14
解得: k 3,·········································································11分
3
TP SP TP SP
由TPSQPSTQ,得 ,且SPQ,假设 ,则
TQ SQ TQ SQ
1 x x
1 2
P T T Q , P S S Q ,设Px,y ,Qx ,y ,Sx ,y ,则 2 1 ,
1 1 2 2 0 0 2 y 1 y 2
1
1
x x (1)
即 1 2 2 ,·······································································12分
y y 2(1)
1 2
x x
x 1 2
0 1 x x x (1)
又 ,所以 1 2 0 ,
y y 1 y 2 y 1 y 2 y 0 (1)
0 1
y2 y2
x2 1 1 x2 1 1
1 3 1 3
联立方程 ,得 ,两式相减,得
y 2 2y 2
x 2 2 1 2x 2 2 2
2 3 2 3
1
(x x )(x x ) (y y )(y y )12,将上述等式代入,得
1 2 1 2 3 1 2 1 2
1 1
x (1) (1) y (1)2(1)(1)(1),·····························13分
0 2 3 0
1 2
即 x y 1,亦即3x 4y 60,故点S为定直线l :3x4y60 上的
2 0 3 0 0 0 1
一段线段(挖掉左右端点S,S ).··························································14分
1 2
以下同解法一.
高三数学试题 第16页(共8页)
{#{QQABDY4QgggAAAAAAAhCAwVqCAKQkAEACAoGwFAMsAABCBFABAA=}#}