当前位置:首页>文档>广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学

广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学

  • 2026-02-18 05:42:13 2026-02-18 05:38:29

文档预览

广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学
广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学
广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学
广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学
广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学
广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学
广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学
广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学
广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学
广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学
广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学
广东省2025年普通高等学校招生全国统一考试模拟测试数学评分细则_2024-2026高三(6-6月题库)_2025年04月试卷_广东省2025年普通高等学校招生全国统一考试模拟测试数学

文档信息

文档格式
docx
文档大小
0.768 MB
文档页数
12 页
上传时间
2026-02-18 05:38:29

文档内容

2025年普通高等学校招生全国统一考试模拟测试(二) 数学 参考答案 一、单项选择题 题号 1 2 3 4 5 6 7 8 答案 D C A B C B A D 二、多项选择题 题号 9 10 11 答案 BC BCD ACD 三、填空题 12. 13. 14. , 四、解答题 15.解:(1)由余弦定理得 ,···················································2分 所以 ,····································································4分 (没变形但答案正确不扣分) 所以 .········································································································6分 (2)由正弦定理得 ,······················7分 整理得 ,··································8分 (正弦定理与正弦二倍角公式各1分) 因为 ,所以 ,···9分 所以 ,··············································································10分 (化简最后结果正确即可得分) 高三数学 第1页(共9页)因为 ,所以 ,解得 ,···············································11分 所以 ,·····························································································12分 ( 与 都没有扣1分) 所以 .································································13分 (答案正确,面积公式没写不扣分) 16. 解:(1)由已知得 ,································································1分 设点 ,则 ,且 ,所以 , ·······················································································································2分 因为 ,所以 ,············································3分 因为 ,所以 ,所以 .··········································5分 另解:因为 ,所以 ,·································3分 因为 ,所以 ,所以 . ··································5分 (x范围写错,但题目过程思路正确,给3分) (2)解法一: 假设四边形 是以 为对称轴的, 则 ,且 的中点 在 上,···································································6分 设 , ,则 , , ,···················································································7分 高三数学 第2页(共9页)(说明M是AC中点,且写出中点坐标关系即可得分) 所以 ,····················································································8分 因为点 在第一象限,且 ,所以 ,····················································9分 所以 ,·········································································10分 所以 ,············································································11分 因为 三点共线,所以 ,·························································12分 所以 ,···········································································13分 因为 ,与 矛盾,故假设不成立,···················································14分 所以四边形 不能是以 为对称轴································································15分 解法二: 假设四边形 是以 为对称轴的, 则 ,且 的中点 在 上,································································6分 因为点 在第一象限,所以直线 斜率存在且直线 不过原点,·····························7分 设直线 的方程为 ,···························································8分 联立得 ,消去 并整理得 ,·························5分 (注:设直线AC方程时,没有说明k存在,扣1分) 设 ,则 ········································10分 所以 的中点为 ,································································11分 高三数学 第3页(共9页)因为 三点共线,所以 ,·······················································12分 所以 ,············································································13分 因为 ,与 矛盾,故假设不成立,···················································14分 所以四边形 不能是以 为对称轴································································15分 另解: 因为 ,所以 ,则直线OB方程为: ································12分 因为 的中点 在 上,所以 代入直线OB方程得: ,解得m=0,即直线AC过原点O·······································14分 所以A、O、C三点共线,与OABC为四边形矛盾, 所以四边形 不能是以 为对称轴································································15分 17.解:(1)如图,连接 , , , 和 ················································1分 因为 , , 为 中点,所以 , ··························2分 又因为 , 平面 ,所以 平面 ·······························3分 同理 平面 ····························································································4分 因为平面 与平面 有公共点 ,且垂直于同一条直线 ································5分 所以 , , , 四点共面···············································································6分 注:①第5分,原因有道理即可给分,若没有写,这1分不给 (2)法一:如图,以 , 分别为 轴, 轴,以过点 且垂直于平面 的直线 轴,建 立如图所示空间直角坐标系,则 , , ,························8分 由(1)得 为二面角 的平面角 高三数学 第4页(共9页)设 ,则点 ···································································9分 故 , , , 设平面 的法向量为 , 则 ,即 ,解得 , 取 ,得 ······················································································································11分 设直线 与平面 所成角为 , 则 ······················································································································12分 其中 , ,·········································································13分 当 时, 取得最大值 ,·······················································14分 所以直线 与平面 所成角的正弦值的最大值为 .·········································15分 注:②第8分,建系正确就给1分,建系正确且D点坐标正确就给2分 ③以下是x轴和y轴正方向不同时,对应的A,C,D的坐标及平面ACD的法向量,供参考 高三数学 第5页(共9页)(2)法二:如图,以 , 分别为 轴, 轴,以过点 且垂直于平面 的直线 轴,建 立如图所示空间直角坐标系,则 , , ,························8分 设点 , ··········································································9分 故 , , , 设平面 的法向量为 , 则 ,即 ,解得 , 取 ,得 ······················································································································11分 设直线 与平面 所成角为 , 则 ·····································12分 求 的最大值,即求 的最大值 令 ,即 表示一条直线, 表示圆,所以当直线与圆相切 时, 取得最大值·····························································································13分 则圆心到直线的距离等于圆的半径3,即 ,所以 ·······························14分 所以直线 与平面 所成角的正弦值的最大值为 .···········································15分 高三数学 第6页(共9页)18. 解:(1)质点运动3次后停在原点右侧的情况有4种,分别是:0次不动、3次向右、0次 向左;1次不动、2次向右、0次向左;0次不动、2次向右、1次向左;2次不动、1次向右、0 次向左.·············································································································2分 所以质点运动3次后停在原点右侧的概率 .·····································4分 说明:每1种情况分析、列式正确得1分. (分类不完整,每少一种情况扣2分;分类完整,概率计算错误扣1分) (2)①质点在运动过程中出现在原点左侧就停止运动且运动5次后停在原点右侧的情况有4 种:5次向右;第1次向右、后4次有3次向右1次向左;前2次向右、后3次有1次向右2次 向左;第1次向右、第2次向左、第3次向右、后2次有1次向右1次向左.····················6分 所以质点在运动过程中出现在原点左侧就停止运动且运动5次后停在原点右侧的概率 .································································································8分 说明:每1种情况分析、列式正确得1分. (分类不完整,每少一种情况扣2分;分类完整,概率计算错误扣1分) ②第一轮游戏结束进入第二轮游戏的情况有2种,分别是3次向右;2次向右,1次向左. 其概率为 ;····································································9分 设两轮游戏最终得分的随机变量为 ,则 的所有可能取值为0,1,3, 易知 的期望 仅与 1,3的概率只有关,因此 , ,·············································································10分 所以最终得分 的期望 高三数学 第7页(共9页),···········11分 (计算每个概率时未乘 ,给1分) 因为 ,所以 ,即 , 所以当 时, ;当 时, ;·······································12分 记 , 求导得 记 ,··············································································13分 解法一、①当 时, , 因为 , , , 所以由零点存在定理,存在 ,使得 ;存在 ,使得 , 当 时, ;当 时, , 所以 在 上单调递增,在 上单调递减, 所以 是 的极大值点, 所以 .····································································································15分 ②当 时, , 因为 , , , 所以由零点存在定理,存在 ,使得 ;存在 ,使得 , 若要使得 在 上存在极大值点, 则 , 高三数学 第8页(共9页)解得 或 , 因为 ,所以 . 综上所述 .······················································································17分 解法二、令 ,得 , 令 , , ①当 时, , , , ,易得 在 上 单调递增, , (ⅰ)当 时,当 时, ,由极大值点的定义判断,函数 在 上 存在唯一极大值点; (ⅱ)当 时, , ,当 时, 恒成立,即 ,由极大值点的定义判断,函数 在 上存在唯一极大值点; 所以 .····································································································15分 ②当 时, , , , ,易得 在 上 单调递增, 当 时, ,由极大值点的定义判断,只需 即可,即 高三数学 第9页(共9页),解得解得 或 ,因为 ,所以 . 综上所述 .······················································································17分 (①②两种情况中,未区分当 时, ;当 时, 两种情况,对 进行分析,酌情给1-2分) 19.解:(1)由题意得 , ,·······························2分 ( 与 每算对一个给1分) 所以 , .····························································································4分 ( 与 每算对一个给1分) (2)由题得 , 所以 .···················5分 因此 中的数对 必由 中的数对 经运算 得到, 中的数对 必由 中的 或数对 经运算 得到,··························································6分 (能说明“要产生 ,必需 ,要产生 ,则需要 或 给2分) 因为 是 数组,其中有一半的项为0,即 个0,经过两次运算 能在 中产生 个数对 ,·································································································7分 因为 中数对 的个数为 个,经过两次运算 能在 中产生 个数对 , 高三数学 第10页(共9页)·······················································································································8分 所以 ,即 ,··································································9分 所以 ,(少此步扣1分) 所以数列 是以2为首项,2为公比的等比数列.··········································10分 (3)当 为奇数时, ,累加得 因为 ,所以 ( 为奇数).···························································11分 当 为偶数时, ,累加得 因为 ,所以 ( 为偶数).···········································12分 所以 , 故 . ·······································································13分 ( 高三数学 第11页(共9页)或 均得1分) 因 为 当 且 为 偶 数 时 , . ······················································································································14分 ①当 时, ;···············································································15分 ②当 且 为奇数时, ;····················16分 ③当 且 为偶数时,因为对任意的 都有 ,所以 ; 综上所述,对任意的 都有 .·······························17分 高三数学 第12页(共9页)