当前位置:首页>文档>2022年巴中市零诊考试文科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试文数试题

2022年巴中市零诊考试文科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试文数试题

  • 2026-02-12 10:30:27 2026-02-12 10:30:27

文档预览

2022年巴中市零诊考试文科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试文数试题
2022年巴中市零诊考试文科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试文数试题
2022年巴中市零诊考试文科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试文数试题
2022年巴中市零诊考试文科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试文数试题
2022年巴中市零诊考试文科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试文数试题
2022年巴中市零诊考试文科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试文数试题
2022年巴中市零诊考试文科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试文数试题
2022年巴中市零诊考试文科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试文数试题
2022年巴中市零诊考试文科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试文数试题

文档信息

文档格式
pdf
文档大小
0.955 MB
文档页数
9 页
上传时间
2026-02-12 10:30:27

文档内容

巴中市普通高中 级“零诊”考试 2020 数学阅卷参考答案(文科) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 一个是符合题目要求的. 1.【解析】B.先写出集合M ,然后逐项验证即可.由U {1, 2, 3, 4, 5}且ð M {1, 2}得M {3, 4, 5}, U 故选B.备注:2022年全国乙卷理数第1题改编. 2.【解析】C.利用复数四则运算,先求出z,再依照复数的概念求出复数z的虚部.选C. 方法一:由题意有z34i (34i)(i) 43i,故复数z的虚部为3. i i(i) 方法二:由iz34ii(3i4),得z43i,故复数z的虚部为3. 3.【解析】A.l ∥l m1,故“m1”是“l ∥l ”的充分不必要条件.选A. 1 2 1 2 4.【解析】D.不妨取双曲线的右焦点(c, 0),渐近线ybx,由点到直线距离公式得b24,然后利 用离心率的变通公式c 1b2  5,进而求得离心率e的值.由题意得,不妨取双曲线的右焦点 F( 1b2, 0),双曲线的渐近线为 ybx,即bxy0,则 |b b210| b2,即b24a2,所以离 b21 心率e b21 5.选D. 5.【解析】C.充分利用长方体中的棱、面之间的关系直观感知,同时结合空间中线面间平行及垂直 的判定与性质推理论证,需注意相应定理的条件的完备性.对于A选项,n也可能;对于B选项, 由条件得不到m,故不能推断出;对于C选项,则法线与法向量垂直则两个平面垂直知正确; 对于D选项,条件中缺少m,故得不到m. 6.【解析】D.由任意角的三角函数定义,得tanab,故B(2, 2a),|OB|2 1tan22|OA|.由 1 2 cos23得:cos2cos2sin2 cos2sin2 3,变形得:1tan2 3,解得tan24,所 5 cos2sin2 5 1tan2 5 以|OB|2 5 .或者,设|OA|r ,则 r21a2 ,sina , cos1 , |OB|2r ;由 cos23 得 r r 5 cos2cos2sin21a2 1a2 3 ,解得:a24,故|OB|2r2 5.选D. r2 1a2 5 7.【解析】D.借助判断函数的奇偶性、对称性和有界性,正弦型函数的符号变化规律,均值不等式 2sin(x) 等知识进行推断.由 f(x) , x[2, 2] 知 f(x)为奇函数,且在(0, 1)内恒正,故A、B选项不 exe x 正确;又2sin(x)≤2,exe x≥2且等号不同时成立,由不等式的性质知| f(x)|1,排除C选项.选 D. 8.【解析】B.设公差为 d ,则由 a a a 6 得 3(a 8d)6 ,即 a 8d a 2 ,故 2 8 17 1 1 9 17(a a ) S  1 17 17(a 8d)34.选B.或者由a 8d a 2得S 17a 34.作为选择题由于满 17 2 1 1 9 17 9 足条件的数列不唯一,可举常数列取a 2验证作出选择. n 9.【解析】A.本题考查平面向量的线性运算、数量积及其几何意义,数量积的坐标表示,数形结合 思想、化归与转化思想、函数与方程思想,运算求解能力.   方 法 一 : 由 点 D 在 BC 上 , 设 BDxBC , 0≤x≤1 , 则           ADABBDABxBCABx(ACAB) (1x)ABxAC , 故  A  D    B  C    A  D  (  A  C    A  B  )[(1x)  A  B  x  A  C  ](  A  C    A  B  ) x  A  C 2 (x1)  A  B 2 13x4,由   y 0≤x≤1得4≤13x4≤9,所以ADBC[4, 9].选A. C 3 方法二:以A为原点,AB,AC所在直线分别为x, y轴建立平面直角坐标系(如图),     则 AB(2, 0), AC(0, 3), BC(2, 3) , 设 D(x, y) , 则 AD(x, y) , 故 D   ADBC2x3y(*),由点D在BC上得:3x2y60, 0≤x≤2(可借助初中 B 的一次函数知识或必修2第三章直线的方程获得x, y满足的方程),用x表示 y代入 A 2 x 文科数学答案第1页 共8页    (*)式得:ADBC2x3y913 x, 0≤x≤2,故ADBC[4, 9].选A. 2       方法三:设AD 与与BC的夹角为,则由题意得ADBC 13|AD|cos,故|AD|cos取最大值时      ADBC最大,|AD|cos取最小值时ADBC最小,结合上图,用运动变化的观点分析易知:D在斜边     BC上移动时,当D与C重合时AD的模最大且与BC的夹角最小(ACB),故此时ADBC取得最大          值,且ADBCmax ACBC AC(ACAB)9;当 D与B重合时AD 的模最小且与BC的夹角最大          (ABC),故此时ADBC取得最小值,且ADBCmin=ABBCAB(ACAB)4.应注意,由向   量夹角的定义知ABC 不是向量AB与BC的夹角!!这是向量问题中的易错点! 10.【解析】B.将函数ycos(x  )的图象向左平移个单位长度,得ycos[(x  )  ]的图象.而 3 3 3 3 ycos[(x  )  ]cos(x    )sin[  (x    )]sin(x  5 ) , 故 由 题 意 知 3 3 3 3 2 3 3 3 6 sinx sin(x  5 ),所以x  5 2kx (kZ),解得6k5 (kZ),由0知: 3 6 3 6 2 当k1时取最小值,故 7.选B.或者,由ycos(x  )知x  2时y1,由ysinx min 2 3 3 知当x 时y1,故由题意得 5     ,解得 7 . 2 3 3 2 2 11.【解析】D. f(x)3x23的变号零点为x1和x1,故A正确;由 f(1)301 f(1) 知B 正确;由yx33x是奇函数,其图象向上平移1个单位长度得到函数 f(x)的图象,故C正确;由于 函数 f(x)在x1处取极小值1,故直线xy0与曲线y f(x)不相切,故D错误,选D.也可借助 函数的图象直观感知作出判断. 12.【解析】A.由已知得:alog 61log 3, blog 121log 4, clog 201log 5 ,故a, b, c 2 2 3 3 4 4 的大小顺序与log 3, log 4, log 5的大小一致.由log 3log 9log 5知ac,排除B、D.由2332 2 3 4 2 4 4 得log 33 ;由4233得2log 43,即log 43 ,所以ab,排除C.故选A. 2 2 3 3 2 ln(x1) 或者利用函数 f(x) (x1)的单调性比较log 3, log 4, log 5的大小.事实上,当x1时 2 3 4 lnx lnx  ln(x1) f(x) x1 x 0 ,故 f(x) 在(1, ) 上是减函数,所以 f(2) f(3) f(4) ,由换底公式得 ln2x log 3log 4log 5,故abc.选A. 2 3 4 二、填空题:本大题共4个小题,每小题5分,共20分. 13.【解析】2.由抛物线y2 2px (p0)的几何性质知,其焦点到准线的距离为 p,本题中 p2. 14.【解析】57.计算得x1 (2356)4,y1 (28314148)37,则样本中心点是(4, 37), 4 4 代入回归方程得ay5x375417,所以回归方程是y5x17,将x8代入得y57. 15.【解析】8 6.由BD平面ADC,AD, DC平面ADC,得BDAD, BDCD;由BD2, AB2 2 , BC2 5 及勾股定理得: AD2, CD4 ,又 AC2 5 ,故 AD2CD2AC2 ,所以 ADDC ,即 BD,AD,CD 两两垂直,所以三棱锥 ABCD的外接球与以BD,AD,CD分别为长、宽、高的长方体的外接相同(如 右图,O为球心),所以球半径R 222242  6,从而V 4R38 6. 2 3 16.【解析】,(0, 3 ].以三角形边角关系的射影定理为背景,综合考查正弦、 3 4 余弦定理、三角变换的基本公式与方法,三角函数的图象与性质等知识,求角A时,既可用正弦定理 边化角,也可用余弦定理角化边,还可直接用教材中习题的结论——射影定理简化;对于sinBsinC的 范围问题,可利用BC2且0B, C 转化只含一个角变量的函数的值域. 3 2 (1)求角A的过程与方法. ①由已知及正弦定理得:2sinAcosAsinCcosBsinBcosC sin(BC)sinA ,又0A , 2 文科数学答案第2页 共8页故cosA1,所以A . 2 3 ②由已知及射影定理得:2acosAccosBbcosCa,故cosA1,又0A ,所以A . 2 2 3 ③由已知及余弦定理得:a2c2b2 a2b2c2 2acosA,化简得cosA1,又0A ,所以 2a 2a 2 2 A . 3 (2)求sinBsinC范围的过程与方法. 策略一:利用正弦型函数的图象与性质. 由A 得BC2,故C2 B,且0B2. 3 3 3 3 ①sinBsinCsinBsin( 2 B)sinB( 3 cosB1 sinB) 3 sin2B1 cos2B11 sin(2B  )1. 3 2 2 4 4 4 2 6 4 因为  2B  7,故1sin(2B  )≤1,当且仅当B 时取等号,故sinBsinC(0, 3 ]. 6 6 6 2 6 3 4 ②令B  x, C  x,由题意得  x , 3 sinx 3 . 3 3 3 3 2 2 故sinBsinCsin(  x)sin(  x) ( 3 cosx1 sinx)( 3 cosx1 sinx) 3 3 2 2 2 2 3 cos2x1 sin2x 3sin2x( 1 , 3 ]. 4 4 4 2 4 因为  x ,所以 3 sinx 3 ,0sin2x3,当且仅当x0,即BC 时取等号, 3 3 2 2 4 3 故sinBsinC 3sin2x(0, 3 ]. 4 4 ③由和、差角的余弦公式可得:2sinBsinCcos(BC)cos(BC)cos(BC)1, 2 由已知得0B, C2,故2 BC2,所以cos(BC)(1 , 1],当且仅当BC 时取 3 3 3 2 3 等号,故sinBsinC(0, 3 ]. 4 策略二:用余弦定理转化. ④在△ABC中,由正弦、余弦定理得:sin2Bsin2C2sinBsinCcosAsin2A ,代入A 得: 3 3sin2Bsin2CsinBsinC,变形得sinBsinC3(sinBsinC)2, 4 4 又sinBsinCsin( BCBC )sin( BCBC ) 2 2 2 2 2cos BC sin BC 2cos  sin BC sin BC , 2 2 3 2 2 由已知得0B, C2,故   BC  ,所以sin BC ( 3 , 3 ) 3 3 2 3 2 2 2 所以0≤|sinBsinC| 3 ,当且仅当BC 时取等号, 2 3 故sinBsinC(0, 3 ]. 4 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分. 17.(12 分) 解:(1)方法一: 由S 2S 2得:S 2S 2·······································································1分 n1 n n2 n1 ∴ S 2S S 2S ,变形得S S 2(S S ) ···································2分 n1 n n2 n1 n2 n1 n1 n ∴ a 2a ①···························································································3分 n2 n1 又 a 2且S S S 2 1 2 1 1 ∴ a 2a ②··································································································4分 2 1 由①②知:对任意nN*,恒有a 2a ,且a 2 n1 n 1 文科数学答案第3页 共8页∴ 数列{a }是首项与公比均为2的等比数列·························································5分 n ∴ a 2n·······································································································6分 n 方法二: 由S 2S 2变形得:S 22(S 2) ·····························································2分 n1 n n1 n 又 a 2,故S 2a 24·············································································3分 1 1 1 ∴ 数列{S 2}是以4首项,2为公比的等比数列 n ∴ S 242n12n1,故S 2n12······························································4分 n n ∴ 当n≥2时,a S S 2n12(2n2)2n················································5分 n n n1 又 a 2也适合上式 1 ∴ a 2n·······································································································6分 n (2)方法一: 由(1)知,b na n2n··················································································7分 n n ∴ T 12222323n2n n 2T  122223(n1)2nn2n1···················································8分 n 两式相减得:T 22223 2nn2n1···························································9分 n  2(12n) n2n1(1n)2n12··············································11分 12 ∴ T (n1)2n12.···················································································12分 n 方法二: 由(1)知,b na n2n··················································································7分 n n 裂项变形得:b n2n(n1)2n1(n2)2n······················································9分 n ∴ T 12222323n2n n 223(22423)(325224)[(n1)2n1(n2)2n]···················10分 2(n2)2n1 即 T (n1)2n12.·················································································12分 n 18.(12 分) 解:(1)由题意得,总人数为200 45岁以上(含45岁)的人数为2003120,45岁以下的人数为80···························1分 5 一周内健步走少于5万步的人数为200 3 60·······················································2分 10 由此得如下列联表:···························································································3分 一周内健步走≥5万步 一周内健步走<5万步 总计 45岁以上(含45岁) 90 30 120 45岁以下 50 30 80 总计 140 60 200 故 K2 200(90305030)2  253 2.706·······················································5分 1406080120 7 ∴ 有90%的把握认为该市市民一周内健步走的步数与年龄有关································6分 (2)由题意,抽取的8人中一周内健步走≥5万步有6人,少于5万步的有2人··················7分 将一周内健步走≥5万步的6人编号为1,2,3,4,5,6,另外两人记为A, B, 则所有可能情况如下: 12,13,14,15,16,23,24,25,26,34,35,36,45,46,56, 1A,2A,3A,4A,5A,6A,1B,2B,3B,4B,5B,6B,AB.总共28种.···········10分 其中恰有一人一周内健步走步数不少于5万步所有可结果如下 : 1A,2A,3A,4A,5A,6A,1B,2B,3B,4B,5B,6B.共12种·························11分 记“抽取的2人中恰有一人一周内健步走步数不少于5万步”这事件C 文科数学答案第4页 共8页由等可能事件的概率公式得:P(C)12 3.··············································· 12分 28 7 19.(12 分) 解:(1)证明 方法一: F 由正方形ABCD的性质得:AB∥CD······································································1分 又 AB平面DCF,CD平面DCF E ∴ AB∥平面DCF ··························································································2分 ∵ BE∥CF ,BE平面DCF,CF平面DCF ∴ BE∥平面DCF······················································································································3分 C ∵ ABBEB, AB, BE 平面ABE B ∴ 平面ABE∥平面DCF···········································································································4分 ∵ AE平面ABE D A ∴ AE∥平面DCF····························································································6分 方法二: 在CF取点G使得CG2BE,连结EG、DG,如右图 F ∵ BE∥CF ∴ 四边形BEGC是平行四边形·············································G······························1分 E 故 EG∥BC,且EGBC ··················································································2分 又 AD∥BC, ADBC ∴ AD∥EG, ADEG·······················································································3分 ∴ 四边形ADGE是平行四边形··············································C·····························4分 B ∴ AE∥DG·····································································································5分 又 AE平面DCF,DG平面DCF D A ∴ AE∥平面DCF······················································································································6分 1 (2)由体积的性质知:V FACE V ACEF  3 S △CEF h·················································8分 ∵ 平面BCFE平面ABCD,平面BCFE平面ABCD=BC ABBC ,AB平面ABCD ∴ AB平面BCFE··························································································9分 又 AB2 故 点A到平面CEF的距离为2,即三棱锥ACEF 底面CEF上的高h2···············10分 由题意,知BE BC, BE∥CF 且CF 3, BC 2 ∴ S△CEF 1 2 CFBC3··················································································11分 1 1 ∴ V FACE V ACEF  3 S △CEF h 3 322.············································12分 20.(12分 解:(1) f(x)1xa x2ax1 , x0········································································ 1分 x x f(x)1xa在(0, )是减函数·······································································2分 x 由在x2时取得极大值得: f(2)0,即12a0,解得:a3 ··························3分 2 2 ∴ f(x)lnx1 x23 x,故 f(1)3 , f(1)1 ·····················································4分 2 2 2 ∴ 曲线y f(x)在点(1, f(1))处的切线方程为y13 (x1),即3x2y10···········5分 2 (2)证明 方法一: 由题意得:g(x) f(x) x2ax1 , x0······························································6分 x 由g(x)0得x2ax10,其判别式△a240 由一元二次方程根与系数的关系知,关于x的方程x2ax10有唯一正根 设x2ax10的唯一正根为m,则有amm21··················································7分 文科数学答案第5页 共8页当0xm时,g(x)0,故g(x)单调递增;当xm时,g(x)0,故g(x)单调递减 ∴ g(x) g(m)lnm1 m2am1lnm1 m21 ·············································8分 max 2 2 2 2 设h(x)lnx1 x21 , x0,则h(x)1x0 2 2 x ∴ h(x)在(0, )上是增函数且h(1)0·······························································9分 由amm21及amm21得:am 1 ≥0,解得m≥1 ······································10分 m ∴ h(m)≥h(1)0,故g(x) lnm1 m21 ≥0··················································11分 max 2 2 又 g(e a 2 2 3 2)a2 1 x2ax11 (xa)210且0e a 2 2 3 2 1 2 2 2 ∴ g(x)在(0, m]内有零点,即g(x)有零点···························································12分 方法二: 由题意得:g(x) f(x) x2ax1 , x0 ····························································6分 x 由g(x)0得x2ax10,其判别式△a240 由一元二次方程的根与系数的关系知,方程x2ax10有唯一正根 设x2ax10的正根为m,则有amm21························································7分 当0xm时,g(x)0,故g(x)单调递增;当xm时,g(x)0,故g(x)单调递减 ∴ g(x) g(m)lnm1 m2am1lnm1 m21 ·············································8分 max 2 2 2 2 ∵ g(e a 2 2 3 2)a2 1 x2ax11 (xa)210且0e a 2 2 3 2 1 2 2 2 ∴ g(x)有零点等价于g(x) ≥0,即lnm1 m21 ≥0·········································9分 max 2 2 由h(x)lnx1 x21 , x0在(0, )上是增函数且h(1)0知: 2 2 当且仅当m≥1时,lnm1 m21 ≥0···································································10分 2 2 由amm21及a≥0得:m 1 ≥0,解得m≥1····················································11分 m ∴ h(m)≥h(1)0,即当a≥0时,g(x) ≥0成立 max ∴ g(x)有零点································································································12分 方法三: g(x)有零点等价于关于x的方程lnx1 x2ax10有正根 2 2 亦等价于关于x的方程a1 (x1 )lnx , (x0)有解················································6分 2 x x 设(x)1 (x1 )lnx , (x0),则(x)1 (1 1 )1lnx x212lnx ·····················7分 2 x x 2 x2 x2 2x2 记H(x)x212lnx, x0,则H(x)2x20,故H(x)是增函数···························8分 x 又 H(1)0,故(x)0有唯一零点x1······························································9分 当0x1时,H(x)0,故(x)0,(x)是单调递减; 当x1时,H(x)0,故(x)0,(x)是单调递增···············································10分 ∴ (x) (1)1 (11 )ln10,即(x)≥0·····················································11分 min 2 1 1 ∴ 当a≥0时,函数g(x) f(x)1 有零点···························································12分 2 方法四: 要证:当a≥0时,函数g(x) f(x)1 有零点 2 只需证:当a≥0时,直线yax与函数h(x)1 x2lnx1 (x0)的图象有公共点·········7分 2 2 由h(x)x1 x21知: x x 文科数学答案第6页 共8页当0x1时,h(x)0,故h(x)单调递减;当x1时,h(x)0,故h(x)单调递··········8分 ∴ h(x) h(1)112ln110······································································9分 min 2 2 ∴ y0是曲线yh(x)在点(1, 0)处的切线··························································10分 即 当a0时,直线yax与函数h(x)的图象有唯一公共点 当a0时,直线yax与函数h(x)的图象在第一象限相交,有两个公共点.···············11分 综上,当a≥0时,直线yax与函数h(x)的图象有公共点. ∴ 当a≥0时,函数g(x) f(x)1 有零点.························································12分 2 21.(12 分) 解:(1)由点P(1, 3 )在C上得: 1  3 1 ①································································1分 2 a2 4b2 3 3 由椭圆的标准方程得A(a, 0)、B(a, 0),故k  2 ,k  2 ····························2分 AP 1a A 2 E 1a 3 3 由k AP k BP 1 4 得: 2  2 1 ,解得:a24···················································3分 1a 1a 4 将a24代入①得:b21····················································································4分 ∴ 椭圆C的方程为 x2 y21············································································5分 4 (2)由题意知直线l不能平行于x轴 设直线l的方程为xtym,M(x, y ), N(x , y ) 1 1 2 2 由直线l与圆x2y21相切得: |m| 1,化简得m2t21···································6分 1t2 xtym,  由  x2 y21. 消去x整理得:(t24)y22tmym240  4 于是,△(2tm)24(t24)(m24)16(t2m24)16348 由求根公式得: y y  △  4 3 ·································································7分 2 1 t24 t24 ∴ MN  1t2 y y  4 3 1t2 ··································································· 8分 2 1 t24 令 1t2 n,则n≥1且 MN  4 3n  4 3 ≤ 4 3 2··············································9分 n23 n3 2 3 n 当且仅当n 3 ,即n 3时取等号······································································10分 n ∴ |MN| 2,此时由 1t2  3解得:t 2················································11分 max ∴ 直线l的斜率为 2 .·····························································································12分 2 (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第 一题记分. 22.【选修4—4:坐标系与参数方程】(10分) 解:(1)∵ 直线l过点P(1, 0),且倾斜角为 6 ∴ l的参数方程为    x1tcos  6 , (t为参数),即    x1 2 3 t, (t为参数)····················2分 ytsin  . y1 t.  6  2 由2 2cos(  ),得2cos2sin······························································3分 4 ∴ 22cos2sin 将xcos, ysin代入上式得:x2y22x2y0 文科数学答案第7页 共8页∴ C的直角坐标方程为x2y22x2y0···························································5分 (2)设A,B两点对应的参数分别为t , t 1 2 将l的参数方程代入C的直角坐标方程,得( 3 t)2( 1 t1)22 2 2 整理,得t2t10··························································································· 6分 此时△(1)241(1)50 ,t t 1, tt 10·············································7分 1 2 12 ∴ |PA||PB||t ||t ||t t |···········································································8分 1 2 1 2  (t t )24tt  (1)241(1) 5·········································9分 1 2 12 即 |PA||PB| 5.·······················································································10分 23.【选修4—5 不等式选讲】(10分) 解:(1)方法一:  4x, x3 ,  2  f(x)6, 3 ≤x 3 ,·····················································································2分 2 2  4x, x≥ 3 .  2  x3,  3 ≤x3 ,  x≤ 3 , ∴ 不等式 f(x)≤8等价于 2 或 2 2 或 2 ···································4分 x≥2. 6≤8. x≤2. ∴ 不等式 f(x)≤8的解集为{x|2≤x≤2}······························································5分 方法二: 当x3 时, f(x)|2x3||2x3| (2x3)(2x3)4x ≤8, 2 解得2x3 ;······························································································1分 2 当3x3 时, f(x)|2x3||2x3| (2x3)(2x3)6 ≤8恒成立, 2 2 所以3x3 ;································································································2分 2 2 当x3时, f(x)|2x3||2x3| (2x3)(2x3)4x8, 2 解得3x2;··································································································3分 2 ∴ 不等式 f(x)≤8的解集为{x|2≤x≤2}······························································5分 方法三: 不等式 f(x)≤8等价于|x3||x3|4,····························································1分 2 2 由绝对值的几何意义知,|x3||x3|表示数轴上的x的对应点到3和3的对应点的距离 2 2 2 2 之和, 又数轴上的2和2的对应点到3和3的对应点的距离之和等于4, 2 2 而2和2之间的数均满足该不等式········································································3分 所以不等式|x3||x3|4的解集为{x|2≤x≤2}, 2 2 故不等式 f(x)≤8的解集为{x|2≤x≤2}·······························································5分 (2)求1 1  1 1的两种方法: a 2b 3c 方法一: ∵ f(x)|2x3||2x3|≥|(2x3)(2x3)|6 当且仅当(2x3)(2x3)≤0,即3 ≤x≤ 3时,取等号·······································6分 2 2 ∴ f(x)的最小值 M 6 从而1 1  1 1······························································································7分 a 2b 3c 方法二: 文科数学答案第8页 共8页 4x, x3 ,  2  由(1)知, f(x)6, 3 ≤x 3 , 2 2  4x, x≥ 3 .  2 作出 f(x)的图象(学生需画出图象)·····································································6分 ∴ f(x)的最小值 M 6,当且仅当3 ≤x≤ 3时取得, 2 2 从而1 1  1 1······························································································7分 a 2b 3c 证明a2b3c≥9的两种方法: 方法一: ∵ a,b,c均为正数 ∴ a2b3c(a2b3c)( 1 1  1 )3( a  2b )( a  3c )( 2b 3c ) ···················8分 a 2b 3c 2b a 3c a 3c 2b ≥32 a 2b 2 a 3c 2 2b3c 9················································9分 2b a 3c a 3c 2b 当且仅当a3,b 3,c1时等号成立 2 ∴ a2b3c≥9.·························································································10分 方法二: ∵ a,b,c均为正数 ∴ a2b3c(a2b3c)( 1 1  1 )≥( a 1  2b 1  3c 1 )29 ················9分 a 2b 3c a 2b 3c 当且仅当a2b3c,即a3,b 3,c1时等号成立 2 ∴ a2b3c≥9.·························································································10分 文科数学答案第9页 共8页