当前位置:首页>文档>四川省绵阳市高中2022级第三次诊断性考试数学答案_2024-2026高三(6-6月题库)_2025年04月试卷_0422四川省绵阳市高中2022级第三次诊断性考试(A卷+元三维大联考B卷)(全科)

四川省绵阳市高中2022级第三次诊断性考试数学答案_2024-2026高三(6-6月题库)_2025年04月试卷_0422四川省绵阳市高中2022级第三次诊断性考试(A卷+元三维大联考B卷)(全科)

  • 2026-02-18 01:59:40 2026-02-18 01:55:42

文档预览

四川省绵阳市高中2022级第三次诊断性考试数学答案_2024-2026高三(6-6月题库)_2025年04月试卷_0422四川省绵阳市高中2022级第三次诊断性考试(A卷+元三维大联考B卷)(全科)
四川省绵阳市高中2022级第三次诊断性考试数学答案_2024-2026高三(6-6月题库)_2025年04月试卷_0422四川省绵阳市高中2022级第三次诊断性考试(A卷+元三维大联考B卷)(全科)
四川省绵阳市高中2022级第三次诊断性考试数学答案_2024-2026高三(6-6月题库)_2025年04月试卷_0422四川省绵阳市高中2022级第三次诊断性考试(A卷+元三维大联考B卷)(全科)
四川省绵阳市高中2022级第三次诊断性考试数学答案_2024-2026高三(6-6月题库)_2025年04月试卷_0422四川省绵阳市高中2022级第三次诊断性考试(A卷+元三维大联考B卷)(全科)
四川省绵阳市高中2022级第三次诊断性考试数学答案_2024-2026高三(6-6月题库)_2025年04月试卷_0422四川省绵阳市高中2022级第三次诊断性考试(A卷+元三维大联考B卷)(全科)
四川省绵阳市高中2022级第三次诊断性考试数学答案_2024-2026高三(6-6月题库)_2025年04月试卷_0422四川省绵阳市高中2022级第三次诊断性考试(A卷+元三维大联考B卷)(全科)
四川省绵阳市高中2022级第三次诊断性考试数学答案_2024-2026高三(6-6月题库)_2025年04月试卷_0422四川省绵阳市高中2022级第三次诊断性考试(A卷+元三维大联考B卷)(全科)
四川省绵阳市高中2022级第三次诊断性考试数学答案_2024-2026高三(6-6月题库)_2025年04月试卷_0422四川省绵阳市高中2022级第三次诊断性考试(A卷+元三维大联考B卷)(全科)
四川省绵阳市高中2022级第三次诊断性考试数学答案_2024-2026高三(6-6月题库)_2025年04月试卷_0422四川省绵阳市高中2022级第三次诊断性考试(A卷+元三维大联考B卷)(全科)
四川省绵阳市高中2022级第三次诊断性考试数学答案_2024-2026高三(6-6月题库)_2025年04月试卷_0422四川省绵阳市高中2022级第三次诊断性考试(A卷+元三维大联考B卷)(全科)

文档信息

文档格式
docx
文档大小
0.383 MB
文档页数
10 页
上传时间
2026-02-18 01:55:42

文档内容

绵阳市高中 2022 级第三次诊断性考试 数学参考答案及评分标准 一、选择题:本大题共8小题,每小题5分,共40分. BABC DACC 二、选择题:本题共3小题,每小题6分,共18分. 9.ACD 10.AB 11.AB 三、填空题:本大题共3小题,每小题5分,共15分. 12.−8 13.0.42 14. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.解:(1)设数列公比为 , 由 , , 成等差数列得: ,····································3分 ∴ ,即: ,可得 ,····························5分 数列{a}的通项公式为: ;························································6分 n (2) ······························································7分 ······························································8分 ···························································9分 ············································································11分 (或 ).··················································13分 数学参考答案及评分标准 第 1 页 共 10 页16.解:(1) ,令 ,···········································1分 ∵函数 在 处取得极值. ,则 ,······································································2分 ∴ ,······················································3分 令 ,可得 ,或 ,·····················································4分 , , 单调递增; , , 单调递减;················································5分 , , 单调递增,············································6分 ∴ 的极小值为 ;···············································7分 (2)由(1)可知 在[1,2]上单调递减,········································8分 ∴ , ,················································9分 ∴ ,·······················································10分 ∴ ···············································13分 ∴当 , .············································15分 数学参考答案及评分标准 第 2 页 共 10 页17.解:(1)梯形 中DA,CB,EF不平行,延长DA,CB,EF, 1 1 记 , , ∵ ,·································2分 ∴△MFD≌△NFC,则FM=FN,即M,N重合,···································3分 1 ∴ ,所以A,B,D,C四点共面;··································4分 1 1 (2)∵平面AEFD⊥平面BEFC,面 面 , , 1 ∴DF⊥面 ,则DF⊥面CF,······················································5分 1 1 易知FE,FC,FD 两两垂直,不妨以F为坐标原点,以FE,FC,FD 分别为x轴, 1 1 y轴,z轴,建立如图所示的空间直角坐标系O-xyz.······································6分 不妨设AE=BE=a,则 , , ,C(0,a+1, 1 0),D(0,0,a+1), 1 则 , ,·······································7分 由 可知, , 可解 ,·····················································································8分 ∴ ;·············································································9分 (3)∵平面 面 ,记面 面 ,在平面EFP内过点E 作直线m⊥l, ∴ ,·················································································10分 又∵ 面 ,∴ ,且 面 , 面 , ∴ 面 ,∴ , 在等腰直角三角形△DFC中FP为中线,即点P为CD 的中点;··············11分 1 1 由第(2)问可知 , ,C(0,3,0), 则 ,····················································12分 不妨设平面BFP的法向量为n=(x,y,z),取平面BEFC的法向量为m=(0,0,1) 平面BFP与平面BEFC所成角为 , 即 ,不妨取 , ·····················13分 则 ,·············································14分 数学参考答案及评分标准 第 3 页 共 10 页∴平面BFP与平面BEFC夹角的余弦值为 .····································15分 18.解:(1) ,则 即a=1,····················································1分 又 ,解得 ,··································································2分 ∴双曲线C的方程为 .························································3分 2)方法一:设 ,则由 , ( 可得: ,····················································4分 又点T在双曲线C上,则 , 化简整理得: ,······························5分 又 , 均在双曲线C上,则 , , 代入上式整理得: ……①,···········································6分 易知直线l 的斜率为0时,不符合题意, 1 设直线l 方程为 ,则 , 1 代入①得: ……② 联立 ,得: ,····································7分 由韦达定理可得: ,·················································8分 代入②式得: ,····································9分 解得: ,即 ,此时 ,则直线l 与双曲线C右支有两个交点, 1 数学参考答案及评分标准 第 4 页 共 10 页即直线l 方程为 ;···························································10分 1 方法二:易知直线l 的斜率为0时,不符合题意,设直线l 方程为 , 1 1 ,MN的中点为P(x,y), 0 0 联立 ,得代入①得: ,··········4分 由韦达定理可得: ,·················································5分 ∴ , ,···················6分 由 = 则 ∴ ,·································································7分 代入双曲线C的方程可得: , ∴ ,···········································································8分 ∴ ,或 ,········································································9分 当 时,直线l 与双曲线的渐进性平行,不符合题意, 1 ∴直线l 方程为 ;···························································10分 1 (3)设直线l 方程为 ,直线l 方程为 , 1 2 由 ,则 ,即 ,································11分 ∴ , ,则 (当且仅当 时 取等号) 数学参考答案及评分标准 第 5 页 共 10 页, , , , 设 则 , 同理可得: ,···································12分 故 , 同理: , ∴ ……③······························13分 联立 得: , 由韦达定理可得: ,同理可得: ,代入③得: = = ·························································14分 令 ,则 ,··················15分 令 ,则 在区间[6,10)上单调递增, ∴ ,···········································································16分 故当 , 时, 的最小值为 .····17分 方法二: (当且仅当 , 时,等 号成立),··························································································16分 ∴ 的最小值为 .········································17分 数学参考答案及评分标准 第 6 页 共 10 页数学参考答案及评分标准 第 7 页 共 10 页19.解:(1)当n = 3时,巴士从(0,0)行驶到(2,1)时,共有 种行驶路线; 从(2,1)行驶到(3,3)时,共有 种行驶路线;·································2分 因此经过(2,1)的行驶路线共有 种;···········································4分 (2)(i)方法一: 除去起点A与终点B外,巴士一定会经过7个格点,若游客恰好游览了7个景点, 说明巴士一定不经过AB对角线上的格点. ∴巴士第一步必然到达(1,0)或(0,1)格点,且必然从(4,3)或(3,4)到达终点.在 这个过程中既不会穿过AB对角线,也不会到达对角线上的格点.····················5分 考虑对称性,不妨先计算从格点(1,0)到达格点(4,3),且不经过(1,0)与(4,3)连 线上方格点的路线总数.·········································································6分 假设向右行驶记为1,向上行驶记为−1,那么每条行驶路线实际唯一对应一个含3 个1与3个−1的序列a ,a ,…,a .行驶路线不经过(1,0)与(4,3)连线上方格点, 1 2 6 等价于对任意前k段,向右行驶的段数都不小于向上行驶的段数,即 . 根据题意,满足条件的路线总数应为 种.·····························8分 从而从格点(0,1)到达格点(3,4),且不经过(0,1)与(3,4)连线上方格点的路线总 数也为5种. 因此游客游览了7个景点的路线总数为10种.·······································9分 方法二:当n = 4时,巴士总共有 种行驶路线,··························5分 除去起点A与终点B外,巴士一定会经过7个格点,若游客恰好游览了7个景点, 说明巴士一定不经过AB对角线上的格点,即(1,1),(2,2),(3,3), 设经过格点C(1,1),D(2,2),E(3,3)分别为事件C,D, E, C D 则经过格点C的路线总数为 种, E 经过格点D的路线总数为 种, 经过格点E的路线总数为 种, 经过格点C与格点D的路线总数为 种, 同理 种, 种, 经过格点C,D,E的路线总数为 种,·········7分 因此经过格点C或格点D或格点E的路线总数为: ,8分 用韦恩图可如上图表示, 故游客恰好游览了7个景点的路线总数为 种;·························9分 (ii)要保证游客能够分别浏览两个景区至少1个景点,即行驶路线必须穿过对角 线AB.不妨先考虑只经过AB及其右下方格点的行驶路线,设总数为R(n),假设向右 行驶记为1,向上行驶记为−1,那么每条行驶路线实际唯一对应一个含 n个1与n个 数学参考答案及评分标准 第 8 页 共 10 页−1的序列a,a,…,a .行驶路线不经过AB左上方的格点,等价于对任意前k段, 1 2 2n 向右行驶的段数都不小于向上行驶的段数,即 ,······························10分 ····································································11分 由题意 ··················································12分 ∴行驶路线不经过AB右下方格点的种数也应为 , ∴行驶路线穿过对角线AB的种数为 , 故 . 只需证: ,n≥5.·······························13分 当n = 5时, ,上式显然成立. 当n≥6时,令 , 显然, .············································································14分 且 , ∵ ( ),当且仅当 时取等, 不难知 ,故 ,·····················15分 所以 ,········16分 即 , 综上所述: .··········································17分 (注:也可以假设 ,对整理后的一元二次不等式进 数学参考答案及评分标准 第 9 页 共 10 页行验证) 数学参考答案及评分标准 第 10 页 共 10 页