当前位置:首页>文档>文科数学答案_2023年11月_01每日更新_02号_2024届四川省绵阳市高三上学期第一次诊断性考试_2024届四川省绵阳市高三上学期第一次诊断性考试文科数学

文科数学答案_2023年11月_01每日更新_02号_2024届四川省绵阳市高三上学期第一次诊断性考试_2024届四川省绵阳市高三上学期第一次诊断性考试文科数学

  • 2026-02-18 07:02:31 2026-02-18 06:58:22

文档预览

文科数学答案_2023年11月_01每日更新_02号_2024届四川省绵阳市高三上学期第一次诊断性考试_2024届四川省绵阳市高三上学期第一次诊断性考试文科数学
文科数学答案_2023年11月_01每日更新_02号_2024届四川省绵阳市高三上学期第一次诊断性考试_2024届四川省绵阳市高三上学期第一次诊断性考试文科数学
文科数学答案_2023年11月_01每日更新_02号_2024届四川省绵阳市高三上学期第一次诊断性考试_2024届四川省绵阳市高三上学期第一次诊断性考试文科数学
文科数学答案_2023年11月_01每日更新_02号_2024届四川省绵阳市高三上学期第一次诊断性考试_2024届四川省绵阳市高三上学期第一次诊断性考试文科数学
文科数学答案_2023年11月_01每日更新_02号_2024届四川省绵阳市高三上学期第一次诊断性考试_2024届四川省绵阳市高三上学期第一次诊断性考试文科数学
文科数学答案_2023年11月_01每日更新_02号_2024届四川省绵阳市高三上学期第一次诊断性考试_2024届四川省绵阳市高三上学期第一次诊断性考试文科数学
文科数学答案_2023年11月_01每日更新_02号_2024届四川省绵阳市高三上学期第一次诊断性考试_2024届四川省绵阳市高三上学期第一次诊断性考试文科数学

文档信息

文档格式
docx
文档大小
0.267 MB
文档页数
7 页
上传时间
2026-02-18 06:58:22

文档内容

绵阳市高中2021级第一次诊断性考试 文科数学参考答案及评分意见 一、选择题:本大题共12小题,每小题5分,共60分. BBCAD BACBC BC 二、填空题:本大题共4小题,每小题5分,共20分. 13.7 14. 15. 16.1 三、解答题:本大题共6小题,共70分. 17.解:(1)由S,2S,3S 成等差数列,则4S=S+3S,得3a=a,················3分 1 2 3 2 1 3 3 2 ∴数列{a}的公比q ,·····································································4分 n 由 ,数列{a}的通项公式 ;··································6分 n (2)令 ,则 ,·········································8分 ∴当 时, ,········································································9分 ∴当 或4时,T 取得最大值: .····························12分 n 8.解:(1)∵ , 1 ,而 ,····························································2分 ∴ ∴ , 即 ,·························································3分 的最小正周期为: ;··················································4分 ∴ 由题意, ,····················································5分 (2) 第 1 页 共 7 页, ∵ ,··································7分 ∴ Z,·······························································9分 ∴ ,·····················································10分 ∴ ∴ 的最小值为 .··········································································12分 19.解:(1)∵ 为奇函数, ∴ ,解得:m=2.···························································5分 (2)当m>0时,2x2+m>0 , ∴函数 不可能有两个零点.································6分 当m <0时,由 ,解得: 或m2,································7分 要使得f(x)仅有两个零点,则 ,··········································8分 即 ,此方程无解. 故m=0,即 ,·······························································9分 令 ,则 , ,解得: 或 , 解得: , 故 在 , 上递增,在 上递减,···························10分 第 2 页 共 7 页又 , 故函数 仅有一个零点.·························································12分 20.解:(1)∵cos(CB)sinA=cos(CA)sinB (cosCcosB+sinCsinB)sinA=(cosCcosA+sinCsinA)sinB··································2分 ∴ ∴cosCcosBsinA=cosCcosAsinB································································3分 又∵△ABC为斜三角形,则cosC≠0, ∴cosBsinA=cosAsinB,·········································································5分 ∴sin(AB)=0,又A,B为△ABC的内角, ∴A=B;····························································································6分 (2)在△ABC中,由(1)知,a=b, ,则 ,···············································7分 由正弦定理 又 ,即 , , ∴ ∴ ==sin2Bsin22B,··································································9分 ∴ =sin2Bsin22B=sin2B4cos2Bsin2B=sin2B4(1sin2B)sin2B,··············10分 令sin2B=t,令f(t)=t4(1t)t=4t23t,·······················································11分 2B<1,即0<t<1, 又因为0<sin ∴当t= 时,f(t)取最小值,且f(t) = , min 综上所述: 的最小值为 .···················································12分 第 3 页 共 7 页21.解:(1)方法一: ,························································1分 因为 在 上单调递增, ∴ 恒成立, 故:当 时, 恒成立.·····················································3分 设 ,则 , 则 , 易知 ,所以 , 故令 得到: ;令 得到: . ∴ 在 上递减;在 上递增.·············································5分 故:当 时, . ∴实数a的取值范围: .···························································6分 方法二: , 因为 在 上单调递增,所以 恒成立, 等价于: 在 上恒成立,········································2分 设 ,则 , , 当 时, , ∴ 在 上递减, ,符合题意.····························3分 当 时,易知 在 上递减,在 上递增,在 上递减, 因为 , 故只需满足 (由 易得),符合题意.·················4分 当 时,易知 在(1,a)上递减,在(a,2)上递增,在 上递减, 第 4 页 共 7 页因为 ,故只需满足 ,即 , 当 时,易知 在(1,2)上递增,在 上递减,························5分 ,不符合题意. 综上:实数a的取值范围: .·····················································6分 (2) 的极值点个数等价于 的变号零点个数, 令 ,则等价于 的变号零点个数,···························7分 当 时, ;当 时, , 由(1)可知 , , 当 时,易知 在 上递减,故 有唯一变号零点1;·······8分 当 时,易知 在 上递减,在 上递增,在 上递减, 因为 , ,故 有唯一变号零点1; 当 且 时,易知 在 上递减,在(a,2)上递增,在 上递 减,·······································································································9分 , , 若 ,即 时,有唯一变号零点1;···································10分 若 ,即 且 时, 有三个变号零点1, , , 且 。 当 时,易知 在 上递减, 在(1,2)上递增,在 上递减,·····················································11分 由于 , , 有唯一变号零点 ,且 . 综上:当 且 时, 有三个极值点; 当 或 时, 有唯一极值点.·············································12分 第 5 页 共 7 页22.解:(1)曲线C 的参数方程为C : (t为参数), 1 1 由 得C 的普通方程为: ;······································2分 1 曲线C 的参数方程为C : ( 为参数), 2 2 所以C 的普通方程为: ;············································4分 2 (2)曲线C 的极坐标方程为: ,···············5分 1 ∴ ,·················································································6分 由 得: , ∴射线: 与曲线C 交于A ,·····································7分 1 曲线C 的极坐标方程为 , 2 由 得: , ∴射线: 与曲线C 交于B ,····································9分 2 则 = = .······················10分 23.解:(1) ···································1分 ∴ ,································2分 第 6 页 共 7 页解得 ,······························································4分 ∴不等式的解集为 ;··················································5分 (2)证明:由 ,可得 的最小值为 ,················6分 则 , , ∴ ·································7分 ··························8分 ,当且仅当 时,等号成立,···············9分 ∴ .···································································10分 第 7 页 共 7 页