当前位置:首页>文档>高三数学答案(1)_2023年11月_0211月合集_2024届山东省青岛市四区统考高三上学期期中_山东省青岛市四区统考2024届高三上学期期中数学

高三数学答案(1)_2023年11月_0211月合集_2024届山东省青岛市四区统考高三上学期期中_山东省青岛市四区统考2024届高三上学期期中数学

  • 2026-02-18 18:42:47 2026-02-18 18:42:47

文档预览

高三数学答案(1)_2023年11月_0211月合集_2024届山东省青岛市四区统考高三上学期期中_山东省青岛市四区统考2024届高三上学期期中数学
高三数学答案(1)_2023年11月_0211月合集_2024届山东省青岛市四区统考高三上学期期中_山东省青岛市四区统考2024届高三上学期期中数学
高三数学答案(1)_2023年11月_0211月合集_2024届山东省青岛市四区统考高三上学期期中_山东省青岛市四区统考2024届高三上学期期中数学
高三数学答案(1)_2023年11月_0211月合集_2024届山东省青岛市四区统考高三上学期期中_山东省青岛市四区统考2024届高三上学期期中数学

文档信息

文档格式
pdf
文档大小
0.206 MB
文档页数
4 页
上传时间
2026-02-18 18:42:47

文档内容

2023-2024 学年度第一学期期中学业水平检测高三数学评分标准 一、单项选择题:本题共8小题,每小题5分,共40分。 1--8:DAAC BCAB 二、多项选择题:本题共4小题,每小题5分,共20分。(选不全得2分) 9.BCD 10.AC 11.BCD 12.ABD 三、填空题:本题共4个小题,每小题5分,共20分。(16题第一个空2分,第二个空3分) 13. y e3x; 14.6; 15.3; 16.(1) 14;(2)2. 四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。 17.(10分) 解:(1)因为CD PA,CD  AD ,PA AD A, 所以CD平面PAD····················································································3分 又因为CD平面ABCD,所以平面ABCD平面PAD···································4分 (2)记AD中点为F ,因为PAPD,所以PF  AD ····································5分 又因为平面ABCD平面PAD AD,所以PF 平面ABCD···························6分 故以F 为坐标原点,分别以FM,FD,FP所在射线为x轴,y轴,z轴,建立如图空间直角坐标系, 所以P(0,0,2),M(2,0,0),D(0,2,0),C(2,2,0),··············································· 7分  设平面PDM 的法向量为n (x ,y ,z ), 1 1 1 1    n PD 0 2y 2z 0 z 则 1  , 1 1 , n 1 PM 0 2x 1 2z 1 0 P  令z 1 ,可得n (1,1,1)··················8分 1 1  设平面PCD的法向量为n (x ,y ,z ) 2 2 2 2   则    n  2   P  C  0 , 2x 2 2y 2 2z 2 0 , A F D n 2 PD 0 2y 2 2z 2 0 y  令z 1 ,可得n (0,1,1)················9分 2 2 B C M 设平面PDM 与平面PCD夹角为, x     |n n | 2 6 则cos|cos n ,n | 1 2   ·············································10分 1 2 |n ||n | 6 3 1 2 18.(12分) 解:(1)因为sin2 Asin2 B4sin AsinBcosC 0 , 由正弦定理知:a2 b2 4abcosC ①···························································2分 又由余弦定理知:c2 a2 b2 2abcosC ②····················································3分 c2 由①②得:cosC  ·············································································4分 6ab c2 3ab 1 又因为c2 3ab,所以cosC    ··········································5分 6ab 6ab 2 2π 因为c(0,π),所以C  ········································································ 6分 3 π π 5π 2π 5π 14 (2)因为T 2(  ) ,所以  , , 2 7 7  7 5 因为N*,所以1或2···································································8分 高三数学答案 第1页(共4页) {#{QQABBQIAogAgABIAARgCEwHiCEKQkBAACKoGAEAIsAAAwAFABCA=}#}1 2π 1 若1,则 f(x)sin(x),因为 f(C) ,所以sin( )  , 2 3 2 π 2π π 7π 因为|| ,所以 ( , ),所以无解············································· 10分 2 3 6 6 1 4π 1 若2,则 f(x)sin(2x),因为 f(C) ,所以sin( )  , 2 3 2 π 4π 5π 11π 4π 7π π 因为|| ,所以 ( , ),所以  ,解得 ··········11分 2 3 6 6 3 6 6    此时 f(x)sin(2x )在( , )上不单调,所以无解······························12分 6 7 2 19.(12分) 1 解:(1)由题 f(x)a ,x0································································1分 x 当a0时, f(x)0, f(x)在(0,)上单调递减;·······································3分 1 当a0时,由 f(x)0解得x ································································4分 a 1 1 所以,当x(0, )时, f(x)0;当x( ,)时, f(x)0; a a 1 1 所以, f(x)在(0, )上单调递减,在( ,)上单调递增;·································6分 a a 1 (2)由(1)知:当a0时, f(x)  f( )1lna·····································7分 min a a2 a2 所以,存在a0,使1lna b成立,即存在a0,使1lna b成立··· 8分 2 2 a2 1 1a2 令g(a)1lna ,则g(a) a ··············································9分 2 a a 所以,g(a)在(0,1)上单调递增,在(1,)上单调递减,···································10分 1 所以g(a) g(1) ···················································································11分 2 1 所以b的取值范围为(, ]··········································································12分 2 20.(12分) 解:(1)因为APBD,PC BD,APPCP,所以BD平面APC········ 1分 所以BD  AC ····························································································2分 因为四边形ABCD是圆柱底面的内接四边形,且AC 为其直径 所以BE ED,AB  AD,BC CD,ABC ADC  90 ·····························4分 又因为AC BCCD,所以AC 2BC, 1 所以在RTABC中,sinBAC  ,所以BAC 30 2 所以BAD 60,BAD是等边三角形························································5分 (2)因为AC 4,由(1)知,在RTABC中,AE 3,EC 1, 所以CE:EA1:3······················································································ 6分 高三数学答案 第2页(共4页) {#{QQABBQIAogAgABIAARgCEwHiCEKQkBAACKoGAEAIsAAAwAFABCA=}#}因为PF :FA1:3,所以PC //EF 又因为PC 平面BFD,EF 平面BFD,所以PC // 平面BFD····················· 7分 所以点P到平面FBD的距离等于点C到平面FBD的距离···································9分 因为CE PC,所以CE EF,又因为CE BD,EFBDE, 所以CE 平面BFD,··············································································· 10分 所以点C到平面FBD的距离为CE 1,点P到平面FBD的距离为1··················12分 21.(12分) CDsinACD 1 解:(1)由题知,在△ACD中,由正弦定理得sinCAD   ····2分 AD 2 π 因为AD CD,所以ACD CAD,所以CAD  ·································3分 6 π 所以D πACDCAD ,所以AD CD········································4分 2 (2)在△ABC中,AC 2··········································································5分 AB2 BC2 AC2 3 由余弦定理知:cosABC   ·······································6分 2ABBC 2 所以AB2 BC2  4 3ABBC ,所以2ABBC 4 3ABBC 4 解得:ABBC  84 3,等号当仅当AB BC 时取··························7分 2 3 1 所以S  ABBCsinB  2 3 ····························································8分 ABC 2 5π AB AC (3)在△ABC中,设BAC (0, ),由正弦定理知:  6 sinACB sinB 5π 5π 所以AB 4sin( ),AE 2sin( ) ····················································9分 6 6 在△ADE中,由余弦定理知:DE2  AD2 AE2 2ADAE cosDAE 5π 5π π 所以DE2 34sin2( )4 3sin( )cos( ) 6 6 6 π π π 34sin2( )4 3sin( )cos( ) 6 6 6 π π π π 52cos( 2)2 3sin( 2)54sin( 2 ) 3 3 3 6 π 54sin( 2)54cos2(1,9]···········································11分 2 π 所以DE2 9,等号当仅当BAC  时取,所以DE 的最大值等于3················12分 2 22.(12分) 解:(1)因为 f(x)ex 2ax1,································································ 1分 设g(x) f(x),则g(x)ex 2a,·····························································2分 高三数学答案 第3页(共4页) {#{QQABBQIAogAgABIAARgCEwHiCEKQkBAACKoGAEAIsAAAwAFABCA=}#}当a0时,g(x)0,所以 f(x)在(,)上单调递增且 f(0)0; 所以,若x0,则 f(x)0;不合题意·······················································3分 当a0时,令g(x)0解得:xln2a, 所以 f(x)在(,ln2a)上单调递减,在(ln2a,)上单调递增, 所以 f(x) f(ln2a)2a2aln2a1(a0)·············································4分 令h(x) xxlnx1(x 0) ,则h(x)lnx; 所以h(x)在(0,1)上单调递增,在(1,)上单调递减,····································5分 所以 f(x)  f(ln2a)h(1)0, min 1 1 即只有a ,满足 f(x)0,所以,a的值为 ··········································6分 2 2 1 (2)由题知a ,ln2a0,由(1)知: f(x)  f(ln2a)0且 f(0)0 2 min 当x(,0)时, f(x)0,所以 f(x)在(,0)上单调递增; 当x(0,ln2a)时, f(x)0,所以 f(x)在(0,ln2a)上单调递减; 所以x  x 0为 f (x)的极大值点··························································· 7分 1 x x2 由(1)知:ex  x1 x,所以ex (e2)2  4 x2 所以 f(x) 2ax1,即,当x10a时, f(x)5a2 10·················8分 4 所以,存在x (ln2a,10a)使得 f(x )0 2 2 当x(lna,x )时, f(x)0, f (x)在(lna,x )上单调递减; 2 2 当x(x ,)时, f(x)0, f (x)在(x ,)上单调递增; 2 2 所以,x  x 为 f (x)的极小值点,即 f (x)有两个极值点·····························9分 2 ex 2 1 x x 因为2a  ,所以 f(x ) (1 2)ex 2  2 , x 2 2 2 2 sinx x x sinx 所以,要证 f(x )1 2 2 ,只需证(1 2)ex 2 1 2 2 2 2 2 2sin x 即证2x  2 0 ···········································································10分 2 ex 2 2sin x 2sin x cosx 设n(x ) 2x  2,x 0 ,则n(x )  2 2 1 2 2 ex 2 2 2 ex 2 2(cosx 1) 再设(x )n(x ),则(x ) 2  0··········································· 11分 2 2 2 ex 2 所以n(x )在(0,)上单调递减,所以n(x ) n(0) 0 2 2 所以n(x )在(0,)上单调递减,所以n(x ) n(0)0 2 2 命题得证···································································································12分 高三数学答案 第4页(共4页) {#{QQABBQIAogAgABIAARgCEwHiCEKQkBAACKoGAEAIsAAAwAFABCA=}#}