当前位置:首页>文档>2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题

2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题

  • 2026-02-12 10:31:52 2026-02-12 10:31:52

文档预览

2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题
2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题
2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题
2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题
2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题
2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题
2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题
2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题
2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题
2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题
2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题
2022年巴中市零诊考试理科数学参考答案(20220904定稿)_2023年8月_01每日更新_2号_2023届四川省巴中市高三9月零诊_2023届四川省巴中市高三零诊考试理数试题

文档信息

文档格式
pdf
文档大小
1.049 MB
文档页数
12 页
上传时间
2026-02-12 10:31:52

文档内容

巴中市普通高中 级“零诊”考试 2020 数学阅卷参考答案(理科) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 一个是符合题目要求的. 1.【解析】B.先写出集合M ,然后逐项验证即可.由U {1, 2, 3, 4, 5}且ð M {1, 2}得M {3, 4, 5}, U 故选B.备注:2022年全国乙卷理数第1题改编. 2.【解析】D.利用复数四则运算,先求出z,再依照复数的概念求出复数z的虚部.选D. 方法一:由题意有z34i (34i)(i) 43i,故复数z的虚部为3. i i(i) 方法二:由iz34ii(3i4),得z43i,故复数z的虚部为3. 3.【解析】A.l ∥l m1,故“m1”是“l ∥l ”的充分不必要条件.选A. 1 2 1 2 4.【解析】D.不妨取双曲线的右焦点(c, 0),渐近线ybx,由点到直线距离公式得b24,然后利 用离心率的变通公式c 1b2  5 ,进而求得离心率e的值.由题意得,不妨取双曲线的右焦点 |b b210| F( 1b2, 0),双曲线的渐近线为ybx,即bxy0,则 b2,即b24a2,所以离心 b21 率e b21 5.选D. 5.【解析】C.充分利用长方体中的棱、面之间的关系直观感知,同时结合空间中线面间平行及垂直 的判定与性质推理论证,需注意相应定理的条件的完备性.对于A选项,n也可能;对于B选项, 由条件得不到m,故不能推断出;对于C选项,则法线与法向量垂直则两个平面垂直知正确; 对于D选项,条件中缺少m,故得不到m. 6.【解析】A.由任意角的三角函数定义,得tana b ,故B(2, 2a),|OB|2 1tan22|OA|.由 1 2 cos23得:cos2cos2sin2 cos2sin2 3,变形得:1tan2 3,解得tan24,所 5 cos2sin2 5 1tan2 5 以|OB|2 5 .或者,设|OA|r ,则 r21a2 , sina , cos1 , |OB|2r ;由 cos23 得 r r 5 cos2cos2sin21a2 1a2 3 ,解得:a24,故|OB|2r2 5.选A. r2 1a2 5 7.【解析】D.借助判断函数的奇偶性、对称性和有界性,正弦型函数的符号变化规律,均值不等式 2sin(x) 等知识进行推断.由 f(x) , x[2, 2]知 f(x)为奇函数,且在(0, 1)内恒正,故A、B选项不 exe x 正确;又2sin(x)≤2,exe x≥2且等号不同时成立,由不等式的性质知| f(x)|1,排除C选项.选 D. 8.【解析】A.设公差为 d ,则 S na  n(n1) d  d n2(a d)n ,故 S n d n(a d ) ;又 n 1 2 2 1 n 2 1 2 S S S 2023  2022 1 , a 2022 ,故 { n} 是以 2022 为首项,1 为公差的等差数列,于是得 2023 2022 1 n S 2023 2022(20231)10,所以S 0.选A.本题也可用基本量法求解,借助等差数列前n项 2023 2023 和的性质运算更为简洁. 9.【解析】D.本题考查平面向量的线性运算、数量积及其几何意义,数量积的坐标表示,数形结合 思想、化归与转化思想、函数与方程思想,运算求解能力.   方 法 一 : 由 点 D 在 BC 上 , 设 BDxBC , 0≤x≤1 , 则           ADABBDABxBCABx(ACAB) (1x)ABxAC , 从 而 得 : y          ADBCAD(ACAB)[(1x)ABxAC](ACAB) C 3 x  A  C 2 (x1)  A  B 2 13x4,由0≤x≤1得4≤13x4≤9,故  A  D    B  C  [4, 9]. D 方法二:以A为原点,AB,AC所在直线分别为x, y轴建立直角坐标系(如图),则       AB(2, 0), AC(0, 3), BC(2, 3),设D(x, y),则AD(x, y),故ADBC2x3y B A 2 x 理科数学答案第1页 共11页(*),由点D在BC上得:3x2y60, 0≤x≤2(可借助初中的一次函数知识或必修2第三章直线   的方程获得x, y满足的方程),用x 表示 y代入(*)式得:ADBC2x3y913 x, 0≤x≤2,故 2   ADBC[4, 9].       方法三:设 AD 与与BC的夹角为,则由题意得 ADBC 13|AD|cos,故|AD|cos取最大值时      ADBC最大,|AD|cos取最小值时ADBC最小,结合上图,用运动变化的观点分析易知:D在斜边     BC上移动时,当D与C重合时AD的模最大且与BC的夹角最小(ACB),故此时ADBC取得最大          值,且ADBCmax ACBC AC(ACAB)9;当D与 B重合时AD 的模最小且与BC的夹角最大          (ABC),故此时ADBC取得最小值,且ADBCmin=ABBCAB(ACAB)4.选D.应注意,   由向量夹角的定义知ABC 不是向量AB与BC的夹角!!这是向量问题中的易错点! 10.【解析】B.将函数ycos(x  )的图象向左平移个单位长度,得ycos[(x  )  ]的图象.而 3 3 3 3 ycos[(x  )  ]cos(x    )sin[  (x    )]sin(x   5 ) , 故 由 题 意 知 3 3 3 3 2 3 3 3 6 sinx sin(x  5 ),所以x  5 2kx (kZ),解得6k5 (kZ),由0知: 3 6 3 6 2 当k1时取最小值,故 7.选B.或者,由ycos(x  )知x  2时y1,由ysinx min 2 3 3 知当x 时y1,故由题意得 5     ,解得 7 . 2 3 3 2 2 11.【解析】B.由 f(x1)2f(x)得: f(x)2f(x1).又当x(0, 1]时, f(x)1 sinx[1 , 0] ,故当x(1, 2]时, f(x)[1 , 0];类推得:当 4 4 2 x(2, 3]时,f(x)4f(x2)sinx[1, 0],且x(2, 3].如图. 由sinx 3 得sinx 3 ,解得x21或x22,解得 2 2 3 3 x7或x8.故若对任意x(, m],都有 f(x)≥ 3,则m≤ 7.选B. 3 3 2 3 12.【解析】C.要比较a, b, c的大小,可先比较lna, lnb, lnc的大小.又lna22ln20,lnb21ln21, lnc20ln22. 方法一:由22202121202242 ,令函数 f(x)(42x)lnx, x≥20,则 f(x)lnx421在 x [20, )上单调递减,所以 f(x)≤ f(20)ln2011 ;因为e232920,所以ln202,ln202, 10 所 以 f(x)≤ f(20)ln2011211 9 0 , 由 此 知 f(x) 在 [20, ) 上 单 调 递 减 , 故 10 10 10 f(20) f(21) f(22),即lnalnblnc,故cba.故选C. 方法二:先比较lna与lnc的大小,易证:函数g(x)lnx在(e, )上单调递减,故ln20ln22,所以 x 20 22 lna22ln2020ln22lnc ,从而ac ;再比较比较lna与lnb 的大小,令h(x) lnx , x≥20 ,则 x1 x1lnx h(x) x ,记y x1lnx,则y 1 10,故y x1lnx在(0, )上是减函数,所以 (x1)2 x x2 x x 当x≥20时,y≤ 21ln200,从而h(x)0,由此知h(x)在[20, )上单调递减,故h(20)h(21), 20 即 ln20ln21 ,变形得22ln2021ln21,所以lnalnb ,由此得ab ;同理可比较得到bc;故 21 22 abc.故选C. 二、填空题:本大题共4个小题,每小题5分,共20分. 13.【解析】1.利用二项展开式的通项公式及已知建立m的方程求得m的值.因为展开式中含x3的 项为C322(mx)340m3x3,所以a 40m340,解得m1.注:本题原型为人教A版选修2-3 5 3 例2(1)题,主要考查二项式定理及其通项公式,及数学运算核心素养和运算求解能力. 14.【解析】57.计算得x1 (2356)4,y1 (28314148)37,则样本中心点是(4, 37), 4 4 代入回归方程得ay5x375417,所以回归方程是y5x17,将x8代入得y57. 理科数学答案第2页 共11页15.【解析】8 6.由题意有:BD平面 ADC , AD, DC平面 ADC ,故 BDAD, BDCD ; 由 BD2 AB2 2 , BC2 5 及 勾 股 定 理 得 : AD2, CD4,又AC2 5,故AD2CD2AC2,所以ADDC ,即BD, AD,CD两两垂直,所以三棱ABCD的外接球与以BD,AD,CD分别为长、 宽、高的长方体的外接相同(如右图,O 为球心),所以球半径 R 222242  6,从而V 4R38 6. 2 3 16.【解析】,[ 2 3 , 3).以三角形边角关系的射影定理为背景,综合考查正弦、余弦定理、三角 3 3 变换的基本公式与方法,三角函数的图象与性质等知识,求角A时,既可用正弦定理边化角,也可用 余弦定理角化边,还可直接用教材中习题的结论——射影定理简化;对于 1  1 的范围问题,可 tanB tanC 切化弦后转化为求sinBsinC的范围,利用BC 2且0B, C 转化只含一个角变量的函数的值域, 3 2 此时可直接代入消元化简也可用对称设元简化;也可用三角形中三内角的正切关系 tanAtanBtanC tanAtanBtanC 转化;还可以构造几何图形作几何法或坐标法求解. (1)求角A的过程与方法. ①由已知及正弦定理得:2sinAcosAsinCcosBsinBcosC sin(BC)sinA ,又0A , 2 故cosA1,所以A . 2 3 ②由已知及射影定理得:2acosAccosBbcosC a ,故cosA1,又0A ,所以A . 2 2 3 ③由已知及余弦定理得:a2c2b2 a2b2c2 2acosA,化简得cosA1,又0A ,所以 2a 2a 2 2 A . 3 (2)求 1  1 范围的过程与方法. tanB tanC 策略一:切化弦后转化借助正弦型函数的图象与性质. 1  1 cosBcosC cosBsinC cosCsinB sin(BC)  sinA  3 ,由A 得 tanB tanC sinB sinC sinBsinC sinBsinC sinBsinC 2sinBsinC 3 BC 2,故C2 B,又B为锐角,所以 B . 3 3 6 2 ①sinBsinCsinBsin( 2 B)sinB( 3 cosB1 sinB) 3 sin2B1 cos2B1 1 sin(2B  )1 .因 3 2 2 4 4 4 2 6 4 为 2B  5 ,故 1sin(2B  )≤1 ,当且仅当 B  取等号,所以 sinBsinC( 1 , 3 ] ,故 6 6 6 2 6 3 2 4 1  1 [ 2 3 , 3). tanB tanC 3 ② 令 B  x, C  x , 由 B 、 C 均 为 锐 角 得   x  , 故 3 3 6 6 sinBsinCsin(  x)sin(  x) ( 3 cosx1 sinx)( 3 cosx1 sinx)3 cos2x1 sin2x3sin2x( 1 , 3 ], 3 3 2 2 2 2 4 4 4 2 4 下同. ③由和、差角的余弦公式可得:2sinBsinCcos(BC)cos(BC)cos(BC) 1 ,由已知得 2  B, C ,故  BC ,所以cos(BC)( 1 , 1],故2sinBsinC(1, 3 ],下同. 6 2 3 3 2 2 策略二:用余弦定理转化. ④在△ABC中,由正弦、余弦定理得:sin2Bsin2C2sinBsinCcosAsin2A ,代入A 得: 3 3sin2Bsin2CsinBsinC ,变形得sinBsinC3(sinBsinC)2,由已知得0≤|sinBsinC| 1 ,故 4 4 2 1sinBsinC≤3,仅当sinBsinC 时取等号;下同. 2 4 策略三:用公式tanAtanBtanC tanAtanBtanC 转化. ⑤由A 得:tan(BC)tanA 3 tanBtanC ,变形得: 3(tanBtanC1)tanBtanC , 3 1tanBtanC 理科数学答案第3页 共11页故 1  1 tanBtanC  3tanBtanC 3  3 3 ; 由  B, C  知 : tanB tanC tanBtanC tanBtanC tanBtanC 6 2 3(tanBtanC1) tanBtanC≥2 tanBtanC ,仅当 tanBtanC 取等号,解得 tanBtanC≥ 3 ,故 tanBtanC≥3,所以 3 ≤ 3 0,从而 1  1 [ 2 3 , 3). 3 tanBtanC tanB tanC 3 策略四:几何法或坐标法 ⑥不妨设a 3,过点A作ADBC于D,如右图.设BDx, 0x 3, y 则CD 3x,tanB AD tanC AD ,所以 1  1  x 3x  3 . A x 3x tanB tanC AD AD A1 A2  B, C 得1AD≤3,故 1  1 [ 2 3 , 3). 6 2 2 tanB tanC 3 ⑦不防设△ABC的边a 3,则其外接圆半径为1.如右图建立直角坐标系, B D O C x 则△ABC的外接圆的方程为x 2(y1 )21,设A(x, y),由已知得 3 x 3 , 2 2 2 3 3 x x 1 y≤3, 1  1  2  2  3 [ 2 3 , 3). 2 tanB tanC y y y 3 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分. 17.(12 分) 解:(1)方法一: 由S 2S 2得:S 2S 2·······································································1分 n1 n n2 n1 ∴ S 2S S 2S ,变形得S S 2(S S ) ···································2分 n1 n n2 n1 n2 n1 n1 n ∴ a 2a ①···························································································3分 n2 n1 又 a 2且S S S 2 1 2 1 1 ∴ a 2a ②································································································· 4分 2 1 由①②知:对任意nN*,恒有a 2a ,且a 2 n1 n 1 ∴ 数列{a }是首项与公比均为2的等比数列·························································5分 n ∴ a 2n·······································································································6分 n 方法二: 由S 2S 2变形得:S 22(S 2)·····························································2分 n1 n n1 n 又 a 2,故S 2a 24·············································································3分 1 1 1 ∴ 数列{S 2}是以4首项,2为公比的等比数列 n ∴ S 242n12n1,故S 2n12······························································4分 n n ∴ 当n≥2时,a S S 2n12(2n2)2n················································5分 n n n1 又 a 2也适合上式 1 ∴ a 2n·······································································································6分 n 方法三:(归纳猜想,然后用数学归纳法证明) 由a 2S 且S 2S 2得:S 6232 1 1 2 1 2 由S 2S 2得:S 14242 3 2 3 同理可得:S 30252····················································································1分 4 猜想:S 2n12·····························································································2分 n 证明:当n1时,S a 2222 ,结论正确 1 1 假设当nk时,有S 2k12成立 k 那么,当nk1时,S 2S 22(2k12)22(k1)12 ··················3分 k1 k 故当nk1时,结论正确 综上可知,S 2n12··············································································4分 n 理科数学答案第4页 共11页下同方法二 (2)方法一: 由(1)知,b na n2n··················································································7分 n n ∴ T 12222323n2n n 2T  122223(n1)2nn2n1···················································8分 n 两式相减得:T 22223 2nn2n1···························································9分 n  2(12n) n2n1(1n)2n12··············································11分 12 ∴ T (n1)2n12.··················································································12分 n 方法二: 由(1)知,b na n2n··················································································7分 n n 裂项变形得:b n2n(n1)2n1(n2)2n······················································9分 n ∴ T 12222323n2n n 223(22423)(325224)[(n1)2n1(n2)2n] ···················10分 2(n2)2n1 即 T (n1)2n12.·················································································12分 n 18.(12 分) 解:(1)由题意得,总人数为200 45岁以上(含45岁)的人数为2003120,45岁以下的人数为80···························1分 5 一周内健步走少于5万步的人数为200 3 60人····················································2分 10 由此得如下列联表:···························································································3分 一周内健步走≥5万步 一周内健步走<5万步 总计 45岁以上(含45岁) 90 30 120 45岁以下 50 30 80 总计 140 60 200 故 K2 200(90305030)2  253 2.706·······················································5分 1406080120 7 ∴ 有90%的把握认为该市市民一周内健步走的步数与年龄有关································6分 (2)由题意,抽取的8人中一周内健步走≥5万步有6人,少于5万步的有2人 ∴ X的所有可能取值为0,1,2,且X服从超几何分布··········································7分 由组合数公式及等可能事件的概率公式得: P(X 0) C0 6 C2 2  1 ···························································································8分 C2 28 8 P(X 1) C1 6 C1 2 12 ···························································································9分 C2 28 8 P(X 2) C 6 2C0 2 15 ·························································································10分 C2 28 8 ∴ X的分布列为 ····························································································11分 X 0 1 2 1 12 15 P 28 28 28 EX 0 1 112215 3 .··························································12分 28 28 28 2 理科数学答案第5页 共11页19.(12 分) F 解:(1)证明 方法一: E 由正方形ABCD的性质得:AB∥CD······································································1分 又 AB平面DCF,CD平面DCF ∴ AB∥平面DCF ·························································································· 2分 ∵ BE∥CF ,BE平面DCF,CF 平面DCF C B ∴ BE∥平面DCF······················································································································3分 ∵ ABBEB, AB, BE平面ABE D A ∴ 平面ABE∥平面DCF············································································································4分 ∵ AE平面ABE ∴ AE∥平面DCF····························································································6分 方法二: 在CF取点G使得CG2BE,连结EG、DG ∵ BE∥CF F ∴ 四边形BEGC是平行四边形···········································································1分 故 EG∥BC,且EGBC ····················································G······························ 2分 E 又 AD∥BC, ADBC ∴ AD∥EG, ADEG······················································································· 3分 ∴ 四边形ADGE是平行四边形···········································································4分 ∴ AE∥DG·······································································C················· B ·············5分 又 AE平面DCF,DG平面DCF ∴ AE∥平面DCF····································································D··························A························6分 方法三: ∵ 平面BCFE平面ABCD,平面BCFE平面ABCD=BC BEBC ,BF 平面BCFE ∴ BE平面ABCD··························································································1分 又 BE∥CF ∴ CF 平面ABCD ·························································································2分 又 CDBC ,故CB,CF,CD两两垂直    以C为原点,CD, CB, CF 的方向分别为x, y, z轴的正方向建立空间直角坐标系Cxyz 由ABBCCDDABE2,CF 3得: C(0, 0, 0), D(2, 0, 0), B(0, 2, 0), A(2, 2, 0), E(0, 2, 2), F(0, 0, 3)·································3分  ∴ AE(2, 0, 2)·····························································································4分   ∵ CBAE(0, 2, 0)(2, 0, 2)0   ∴ CBAE·····································································································5分  又 CB(0, 2, 0)是平面CDF的一个法向量,且AE平面CDF ∴ AE∥平面DCF····························································································6分       或者,由AE(2, 0, 2)DC 2 CF 知:向量AE, DC, CF 共面 3 又 AE平面CDF,DC, CF 平面CDF ∴ AE∥平面DCF (2)在(1)中方法三的坐标系下,有:    AE(2, 0, 2), EF (0, 2, 1),平面CEF的一个法向量为CD(2, 0, 0)····················8分  设平面AEF的一个法向量为m(x, y, z),则由   mAE0, 2x2z0,    得: 取y1得:m(2, 1, 2) ·········································10分 mEF 0. 2yz0.     ∴ cosm, CD  m  C  D   221020 2 ·····················································11分 |m||CD| 2 221222 3 故由几何体的空间结构知:二面角AEFC的余弦值为2.··································12分 3 20.(12 分) 理科数学答案第6页 共11页解:(1)由点P(1, 3 )在C上得: 1  3 1 ①································································1分 2 a2 4b2 3 3 由椭圆的标准方程得A(a, 0)、B(a, 0),故k  2 ,k  2 ····························2分 AP 1a A 2 E 1a 3 3 由k AP k BP 1 4 得: 2  2 1 ,解得:a24···················································3分 1a 1a 4 将a24代入①得:b21····················································································4分 ∴ 椭圆C的方程为 x2 y21············································································5分 4 (2)由题意知直线l不能平行于x轴 设直线l的方程为xtym,M(x, y ), N(x , y ) 1 1 2 2 由直线l与圆x2y21相切得: |m| 1,化简得m2t21···································6分 1t2 xtym,  由  x2 y21. 消去x整理得:(t24)y22tmym240  4 于是,△(2tm)24(t24)(m24)16(t2m24)16348 由求根公式得: y y  △  4 3 ·································································7分 2 1 t24 t24 ∴ MN  1t2 y y  4 3 1t2 ··································································· 8分 2 1 t24 令 1t2 n,则n≥1且 MN  4 3n  4 3 ≤ 4 3 2··············································9分 n23 n3 2 3 n 当且仅当n 3 ,即n 3时取等号······································································10分 n ∴ |MN| 2,此时由 1t2  3解得:t 2················································11分 max ∴ 直线l的斜率为 2 .················································································12分 2 21.(12 分) 解:(1)证明 方法一: 由题意得:g(x) f(x) x2ax1 , x0······························································1分 x 由g(x)0得x2ax10,其判别式△a240 由一元二次方程根与系数的关系知,关于x的方程x2ax10有唯一正根 设x2ax10的唯一正根为m,则有amm21··················································2分 当0xm时,g(x)0,故g(x)单调递增;当xm时,g(x)0,故g(x)单调递减 ∴ g(x) g(m)lnm1 m2am1lnm1 m21 ·············································3分 max 2 2 2 2 设h(x)lnx1 x21 , x0,则h(x)1x0 2 2 x ∴ h(x)在(0, )上是增函数且h(1)0·······························································4分 由amm21及amm21得:am 1 ≥0,解得m≥1 m ∴ h(m)≥h(1)0,故g(x) lnm1 m21 ≥0···················································5分 max 2 2 又 g(e a 2 2 3 2)a2 1 x2ax11 (xa)210且0e a 2 2 3 2 1 2 2 2 ∴ g(x)在(0, m]内有零点,即g(x)有零点····························································6分 方法二: 理科数学答案第7页 共11页由题意得:g(x) f(x) x2ax1 , x0 ····························································1分 x 由g(x)0得x2ax10,其判别式△a240 由一元二次方程的根与系数的关系知,方程x2ax10有唯一正根 设x2ax10的正根为m,则有amm21························································2分 当0xm时,g(x)0,故g(x)单调递增;当xm时,g(x)0,故g(x)单调递减 ∴ g(x) g(m)lnm1 m2am1lnm1 m21 ·············································3分 max 2 2 2 2 ∵ g(e a 2 2 3 2)a2 1 x2ax11 (xa)210且0e a 2 2 3 2 1 2 2 2 ∴ g(x)有零点等价于g(x) ≥0,即lnm1 m21 ≥0 max 2 2 由h(x)lnx1 x21 , x0在(0, )上是增函数且h(1)0知: 2 2 当且仅当m≥1时,lnm1 m21 ≥0·····································································4分 2 2 由amm21及a≥0得:m 1 ≥0,解得m≥1······················································5分 m ∴ h(m)≥h(1)0,即当a≥0时,g(x) ≥0成立 max ∴ g(x)有零点·································································································6分 方法三: g(x)有零点等价于关于x的方程lnx1 x2ax10有正根 2 2 亦等价于关于x的方程a1 (x1 )lnx , (x0)有解················································1分 2 x x 设(x)1 (x1 )lnx , (x0),则(x)1 (1 1 )1lnx x212lnx ·····················2分 2 x x 2 x2 x2 2x2 记H(x)x212lnx, x0 ,则H(x)2x20,故H(x)是增函数···························3分 x 又 H(1)0,故(x)0有唯一零点x1······························································4分 当0x1时,H(x)0,故(x)0,(x)是单调递减; 当x1时,H(x)0,故(x)0,(x)是单调递增 ∴ (x) (1)1 (11 )ln10,即(x)≥0······················································5分 min 2 1 1 ∴ 当a≥0时,函数g(x) f(x)1 有零点·····························································6分 2 方法四: 要证:当a≥0时,函数g(x) f(x)1 有零点 2 只需证:当a≥0时,直线yax与函数h(x)1 x2lnx1 (x0)的图象有公共点·········7分 2 2 由h(x)x1 x21知: x x 当0x1时,h(x)0,故h(x)单调递减;当x1时,h(x)0,故h(x)单调递, ∴ h(x) h(1)112ln110······································································9分 min 2 2 ∴ y0是曲线yh(x)在点(1, 0)处的切线··························································10分 即 当a0时,直线yax与函数h(x)的图象有唯一公共点 当a0时,直线yax与函数h(x)的图象在第一象限相交,有两个公共点.···············11分 综上,当a≥0时,直线yax与函数h(x)的图象有公共点. ∴ 当a≥0时,函数g(x) f(x)1 有零点.························································12分 2 (2)方法一: 由已知得 f(x)1xa,故 f(x ) 1 x a x 0 x 0 0 理科数学答案第8页 共11页f(x ) f(x ) 又 f(x ) 2 1 ,且 0 x x 2 1 (lnx 1 x 2ax )(lnx 1 x2ax) f(x 2 ) f(x 1 )  2 2 2 2 1 2 1 1  lnx 2 lnx 1 x 1 x 2 a x x x x x x 2 2 1 2 1 2 1 ∴ 1 x  lnx 2 lnx 1 x 1 x 2 ①·····································································7分 x 0 x x 2 0 2 1 令F(x)(x1)lnx2(x1), (x1),则F(x)lnx11, (x1) x 设yF(x)lnx11, x1,则x1时,y x10,故F(x)是增函数 x x2 ∴ F(x)F(1)0,故F(x)在(1, )上是增函数 ∴ F(x)F(1)0······························································································8分 x 由x x 0得: 2 1, x x 0·········································································9分 2 1 x 2 1 1 x x x x 取x 2 得:( 2 1)ln 2 2( 2 1)0 ,变形得:(x x)(lnx lnx)2(x x) x x x x 2 1 2 1 2 1 1 1 1 1 ∴ lnx 2 lnx 1  2 ②···············································································10分 x x x x 2 1 2 1 由①②得: 1 x  2  x 1 x 2 ······································································11分 x 0 x x 2 0 2 1 设k(x)1x (x0),则上式即为k(x )k( x 1 x 2) x 0 2 ∵ 函数k(x)1x在(0, )上是减函数 x x x ∴ x  1 2 .·····························································································12分 0 2 方法二: ∵ f(x)1xa,故 f(x ) 1 x a x 0 x 0 0 f(x ) f(x ) lnx lnx x x 由 f(x ) 2 1 得: f(x ) 2 1 1 2 a 0 x x 0 x x 2 2 1 2 1 ∴ 1 x  lnx 2 lnx 1 x 1 x 2 ①·······································································7分 x 0 x x 2 0 2 1 x x x x 下面先证明:当0x x 时, 2 1  1 2 ② 1 2 lnx lnx 2 2 1 由0x x 得:lnx lnx ,故lnx lnx 0 1 2 2 1 2 1 x 2( 2 1) 2x x x x 要证②成立,需证:lnx lnx  2 1 ,即证:ln 2  1 ③···························8分 2 1 x x x x 1 2 1 2 1 x 1 x 2(t1) 令t 2 ,则③式即为lnt (t1) x 1t 1 设G(t) 2(t1) lnt, t1,则G(t) 2 1 1t2 0 t1 (t1)2 t t(t1)2 ∴ G(t)在(1, )上是减函数·············································································9分 2(t1) ∴ G(t)G(1)0,即:lnt (t1)成立 1t x x x x ∴ 2 1  1 2 成立···············································································10分 lnx lnx 2 2 1 ∴ 当0x x 时, lnx 2 lnx 1  2 成立 1 2 x x x x 2 1 1 2 结合①得: 1 x  2  x 1 x 2 ······································································11分 x 0 x x 2 0 1 2 理科数学答案第9页 共11页设k(x)1x (x0),则上式即为k(x )k( x 1 x 2) x 0 2 ∵ 函数k(x)1x在(0, )上是减函数 x x x ∴ x  1 2 .·····························································································12分 0 2 方法三: ∵ f(x)1xa,故 f(x ) 1 x a x 0 x 0 0 f(x ) f(x ) lnx lnx x x 由 f(x ) 2 1 得: f(x ) 2 1 1 2 a 0 x x 0 x x 2 2 1 2 1 ∴ 1 x  lnx 2 lnx 1 x 1 x 2 ···········································································7分 x 0 x x 2 0 2 1 由 f(x)1xa在(0, )上是减函数知: x x x x x 当0x x 时, 1 2 与x 的大小关系同 f( 1 2)与 f(x )的大小关系一致·············8分 1 2 2 0 2 0 故只需比较 2 与 lnx 2 lnx 1 的大小 x x x x 1 2 2 1 x 2( 2 1) 作差变形得: 2  lnx 2 lnx 1 1 [ x 1 ln x 2]··········································9分 x x x x x x x x 1 2 2 1 2 1 2 1 1 x 1 x 由0x x 知:t 2 1, x x 0 1 2 x 2 1 1 设G(t) 2(t1) lnt, t1,则G(t) 2 1 1t2 0 t1 (t1)2 t t(t1)2 ∴ G(t)在(1, )上是减函数············································································10分 x 2( 2 1) x x 故G(t)G(1)0,即: 1 ln 2 0 x x 2 1 1 x 1 x 2( 2 1) ∴ 2  lnx 2 lnx 1 1 [ x 1 ln x 2]0,即 2  lnx 2 lnx 1 ··············11分 x x x x x x x x x x x x 1 2 2 1 2 1 2 1 1 1 2 2 1 x 1 x x x x ∴ f( 1 2) f(x ),故x  1 2 .······························································12分 2 0 0 2 (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第 一题记分. 22.【选修4—4:坐标系与参数方程】(10分) 解:(1)∵ 直线l过点P(1, 0),且倾斜角为 6 ∴ l的参数方程为    x1tcos  6 , (t为参数),即    x1 2 3 t, (t为参数)····················2分 ytsin  . y1 t.  6  2 由2 2cos(  ),得2cos2sin······························································3分 4 ∴ 22cos2sin 将xcos, ysin代入上式得:x2y22x2y0 ∴ C的直角坐标方程为x2y22x2y0···························································5分 (2)设A,B两点对应的参数分别为t , t 1 2 将l的参数方程代入C的直角坐标方程,得( 3 t)2( 1 t1)22 2 2 理科数学答案第10页 共11页整理,得t2t10····························································································6分 此时△(1)241(1)50 ,t t 1, tt 10·············································7分 1 2 12 ∴ |PA||PB||t ||t ||t t |···········································································8分 1 2 1 2  (t t )24tt  (1)241(1) 5 ···········································9分 1 2 12 即 |PA||PB| 5 .·······················································································10分 23.【选修4—5 不等式选讲】(10分) 解:(1)方法一:  4x, x3 ,  2  f(x)6, 3 ≤x 3 ,·····················································································2分 2 2  4x, x≥ 3 .  2  x3,  3 ≤x3 ,  x≤ 3 , ∴ 不等式 f(x)≤8等价于 2 或 2 2 或 2 ···································4分 x≥2. 6≤8. x≤2. ∴ 不等式 f(x)≤8的解集为{x|2≤x≤2}······························································5分 方法二: 当x3 时, f(x)|2x3||2x3| (2x3)(2x3)4x ≤8, 2 解得2x3 ;······························································································1分 2 当3x3 时, f(x)|2x3||2x3| (2x3)(2x3)6 ≤8恒成立, 2 2 所以3x3 ;································································································2分 2 2 当x3时, f(x)|2x3||2x3| (2x3)(2x3)4x8, 2 解得3x2;··································································································3分 2 ∴ 不等式 f(x)≤8的解集为{x|2≤x≤2}······························································5分 方法三: 不等式 f(x)≤8等价于|x3||x3|4,····························································1分 2 2 由绝对值的几何意义知,|x3||x3|表示数轴上的x的对应点到3和3的对应点的距离 2 2 2 2 之和, 又数轴上的2和2的对应点到3和3的对应点的距离之和等于4, 2 2 而2和2之间的数均满足该不等式········································································3分 所以不等式|x3||x3|4的解集为{x|2≤x≤2}, 2 2 故不等式 f(x)≤8的解集为{x|2≤x≤2}·······························································5分 (2)求1 1  1 1的两种方法: a 2b 3c 方法一: ∵ f(x)|2x3||2x3|≥|(2x3)(2x3)|6 当且仅当(2x3)(2x3)≤0,即3 ≤x≤ 3时,取等号·······································6分 2 2 ∴ f(x) 的最小值 M 6 从而1 1  1 1······························································································7分 a 2b 3c 方法二: 理科数学答案第11页 共11页 4x, x3 ,  2  由(1)知, f(x)6, 3 ≤x 3 , 2 2  4x, x≥ 3 .  2 作出 f(x)的图象(学生需画出图象)·····································································6分 ∴ f(x)的最小值 M 6,当且仅当3 ≤x≤ 3时取得, 2 2 从而1 1  1 1······························································································7分 a 2b 3c 证明a2b3c≥9的两种方法: 方法一: ∵ a,b,c均为正数 ∴ a2b3c(a2b3c)( 1 1  1 )3( a  2b )( a  3c )( 2b 3c ) ···················8分 a 2b 3c 2b a 3c a 3c 2b ≥32 a 2b 2 a 3c 2 2b3c 9················································9分 2b a 3c a 3c 2b 当且仅当a3,b 3,c1时等号成立 2 ∴ a2b3c≥9.·························································································10分 方法二: ∵ a,b,c均为正数 ∴ a2b3c(a2b3c)( 1 1  1 )≥( a 1  2b 1  3c 1 )29 ················9分 a 2b 3c a 2b 3c 当且仅当a2b3c,即a3,b 3,c1时等号成立 2 ∴ a2b3c≥9.·························································································10分 理科数学答案第12页 共11页