当前位置:首页>文档>2024届南宁市高中毕业班适应性测试数学答案(1)_2024年5月_025月合集_2024届广西届南宁市高三二模(金太阳459C)

2024届南宁市高中毕业班适应性测试数学答案(1)_2024年5月_025月合集_2024届广西届南宁市高三二模(金太阳459C)

  • 2026-02-13 06:43:38 2026-02-13 04:48:28

文档预览

2024届南宁市高中毕业班适应性测试数学答案(1)_2024年5月_025月合集_2024届广西届南宁市高三二模(金太阳459C)
2024届南宁市高中毕业班适应性测试数学答案(1)_2024年5月_025月合集_2024届广西届南宁市高三二模(金太阳459C)
2024届南宁市高中毕业班适应性测试数学答案(1)_2024年5月_025月合集_2024届广西届南宁市高三二模(金太阳459C)
2024届南宁市高中毕业班适应性测试数学答案(1)_2024年5月_025月合集_2024届广西届南宁市高三二模(金太阳459C)

文档信息

文档格式
pdf
文档大小
0.301 MB
文档页数
4 页
上传时间
2026-02-13 04:48:28

文档内容

2024 届南宁市初中毕业班适应性测试 数学参考答案 一、选择题(本大题共12小题,每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B A C A B D A C B D C 二、填空题(本大题共6小题,每小题2分,共12分 ) 1 13.x(x-5); 14.x≥3; 15. ; 16.(0,6); 17.25; 18.nm2. 3 三、解答题(本大题共72分) 19.(本题满分6分) 解:原式=9(1)+2,·····························3分 =-9+2,·····································4分 =-7.········································6分 20.(本题满分6分) 解:原式=a2 2abb2 2abb2,·············2分 =a2 4ab.································4分 1 当a=2,b=- 时, 4 1 原式=22 42( ),·····················5分 4 =4-2 =2.··········································6分 21.(本题满分10分) (1)如图所示,CE即为所求;·····················5分 (2)证明:∵在Rt△ABC中,∠ACB=90°,∠A=40°, ∴∠B=90°-40°=50°.··················6分 又点D为AB中点, ∴CD=BD.·······························7分 (第21题图) ∴∠B=∠DCB=50° .·················8分 ∵CE平分∠BCD, 1 ∴∠BCE= ∠BCD=25°.··········· 9分 2 ∴∠AEC=∠B+∠BCE=75°.········10分 数学参考答案 第1页(共4页) {#{QQABAYCUggAoAIJAARhCQQ2QCAMQkBEACAoGhFAEIAAByAFABAA=}#}22.(本题满分10分) (1)m=40,a=12,n%=40%;·················3分 (2)他的说法是错误的.···························· 4分 理由如下: ∵在参加测试的40名学生测试成绩中,排在最中间的两个分数都是85, 8585 ∴中位数为 85.·····················6分 2 ∵84<85, ∴有一半以上的同学成绩超过了84分.···7分 ∴小邕的说法是错误的. (3)解:500×(40%+30%)=350(人)············9分 答:估计本年级中食品安全意识良好的学生人数为350人.····················10分 23.(本题满分10分) (1)证明:∵AB∥DE, ∴∠B=∠E.······································ 1分 又BF=CE, ∴BF+FC=CE+FC,即BC=EF.·············2分 在△ABC和△DEF中 ABDE  BE,·····································3分  BC EF ∴△ABC≌△DEF(SAS).···················4分 (2)解:连接AD交FC于点O, ∵△ABC≌△DEF, ∴AC=DF,∠ACB=∠DFE.················5分 ∴AC∥DF. ∴四边形ACDF是平行四边形. (第23题图) 又AF=FD, ∴四边形ACDF是菱形.·······················6分 1 ∴AD⊥CF,OF=OC= FC=2. 2 在Rt△ACO中 ∴AO AC2 OC2  ( 13)2 22 3,··7分 ∴AD=2AO=6.··································8分 1 1 ∴S = FCAD 6412.·····10分 四边形ACDF 2 2 数学参考答案 第2页(共4页) {#{QQABAYCUggAoAIJAARhCQQ2QCAMQkBEACAoGhFAEIAAByAFABAA=}#}24.(本题满分10分) (1)解:设团购群1《儒林外史》和《简爱》的单价分别是x元、y元;············1分 3x2y12220 由题意得: ,·····3分 4x3y288 x48 解得  .···························5分 y32 答:团购群1《儒林外史》和《简爱》的单价分别是48元、32元.············6分 (2)解:团购群1:(4832)150.784(0 元), ·······································7分 团购群2:7015105(0 元) 1050-40393(0 元),····8分 ∵840<930,·································9分 ∴选择团购群1购买更合算.············10分 25.(本题满分10分) (1)证明:如图1,连接OC,·····················1分 ∵OA=OB,CA=CB, ∴OC⊥AB.····································3分 又OC为半径, ∴AB是⊙O的切线.························4分 (2)解:设半径为R, 在Rt△OCB中,∠OCB=90°,BC= 1 AB=4, (第25题图1) 2 OB2 OC2 BC2,即R22 R242, 解得R=3,···································5分 ∴OB=OE+BE=5.··························6分 方法一:如图2,过O作OM⊥EG于点M, 又OA=OB,AC=BC, ∴∠A=∠B. 又OF=OE, ∴∠F=∠OEF=∠BEG. ∴△AFG∽△BEG.··························7分 ∴∠AGF=∠BGE=90°, (第25题图2) FG AG AF 8     4. EG BG BE 2 ∴FG=4EG,AG=4GB. ∴AB=4GB+GB=8. 8 解得GB= .··································8分 5 2 8 6 ∴EG BE2 BG2  22    .·············································9分 5 5 6 18 ∴EF FGEG3EG3  .················································10分 5 5 数学参考答案 第3页(共4页) {#{QQABAYCUggAoAIJAARhCQQ2QCAMQkBEACAoGhFAEIAAByAFABAA=}#}方法二:如图3,连接DE, OD OE 3 ∵∠DOE=∠AOB,   , OA OB 5 ∴△DOE∽△AOB.·························7分 DE OE 3 ∴   . AB OB 5 24 ∴DE= .····································8分 (第25题图3) 5 ∵DF是⊙O直径, ∴∠DEF=90°.·····························9分 2 24 18 ∴EF  DF2 DE2  62    .··········································10分  5  5 26.(本题满分10分) (1)解:由题意可知,抛物线顶点为(2,2),经过B(0,1.2) 设抛物线的解析式为yax222···············································1分 将点B(0,1.2)代入,得1.2a0222, 1 解得 a .·············································································2分 5 1 ∴抛物线的解析式为y x222.············································3分 5 (2)队伍排列时,最高的队员在正中间其位置的横坐标为2, 其余同学按照从高到低的顺序在其两侧对称排列. 身高为1.68与1.73的队员所在位置的横坐标分别为1.5与2.5,···············4分 身高为1.60的队员所在位置的横坐标分别为1与3; ∵1.8<2, ∴身高最高的队员可以通过.·····························································5分 1 1 由题意,把x1.5代入y x222中,得y 1.52221.95. 5 5 ∵1.95>1.73>1.68, ∴可以通过.····································· ·············································6分 1 1 由题意,把x1代入y x222中,得y 12221.8. 5 5 ∵1.8>1.60, ∴可以通过.····································· ·············································7分 综上所述,所有队员都可以通过. 1 (3)由题意,把y1.60代入 y x222中, 5 1 则1.6 x222.·····································································8分 5 解得x 2 2,x 2+ 2 (舍去).···················································9分 1 1 ∵2 2>0.5, ∴最左边的跳绳队员与离他最近的甩绳队员之间距离的取值范围: 2 2<x≤1.································· ·············································10分 数学参考答案 第4页(共4页) {#{QQABAYCUggAoAIJAARhCQQ2QCAMQkBEACAoGhFAEIAAByAFABAA=}#}