文档内容
雅安市高 2021 级第三次诊断性考试
数学(理科)参考答案
一、选择题(本大题共 12小题,每小题 5分,共 60分)
AACDA ABCDD BB
二、填空题(本大题共 4 小题,每小题 5 分,共 20分)
4
13. 15 14. -1 15. 16. 14
29
三、解答题(本大题共 6 小题,共 70 分)
17.(1)a 2,S a 2
1 n n1
当n1时,a a 2,a 4,a 2a,
1 2 2 2 1
当n2时,S a 2, 两式相减得a 2a (n2),
n1 n n1 n
,
,
数列 是以2为首项,2为公比的等比数列,
.··································································6分
(2)由(1)可知b 1log a 1n,记c a b 1n 2n,
n 2 n n n n
∴T 221 322 423 (1n)2n,
n
2T 222 323 424 (1n)2n1,
n
两式相减得
22 12n1
T 422 23 2n (1n)2n1 4 (1n)2n1 n2n1.
n 12
∴T n2n1.····························································12分
n
18.(1)补全的 列联表如下:
年龄段Ⅰ 年龄段Ⅱ 合计
使用频率高 150 110 260
使用频率低 250 290 540
合计 400 400 800
···································································3分
所以 ,
数学(理科)答案 1/6
{#{QQABaYSAogCgQoAAABgCQQlwCgAQkAAACIoOxBAAMAAACAFABCA=}#}所以有99%的把握认为跑腿服务的使用频率高低与年龄有关.······················6分
(2)由数表知,利用分层抽样的方法抽取的8人中,年龄在 , 内的人数分
别为5,3,依题意, 的所有可能取值分别为为-2,0,2,
所以 ,
,
,
所以 的分布列为:
-2 0 2
P
所以 的数学期望为 .·················12分
19.(1)证明:因为 , 为线段 的中点,
所以 ,·························································1分
在等腰梯形 中,作 于 ,则由 得 ,
所以 ,所以 ,
因为 ,所以 所以 ∽ ,所以
,
所以 ,所以 ,······································3分
因为 , ,
所以 平面 ,···················································4分
因为 在平面 内,所以 ,··································5分
因为 , 在平面 内,所以 平面 .·········6分
(2)解:因为 , ,所以 , ,
数学(理科)答案 2/6
{#{QQABaYSAogCgQoAAABgCQQlwCgAQkAAACIoOxBAAMAAACAFABCA=}#}取 的中点 ,连接 ,则 ,因为 平面 ,所以 ,
又 所以 平面 ,··································7分
所以如图,以 为原点,以 所在的直线为 轴,以 所在的直线为 轴,建立空
间直角坐标系,·························································8分
则 ,C(0,0,0),
令平面PCD法向量
3 1
CDm x y 0 y 3x
2 2
,
3
3 3 z x
CPm x z 0 3
2 2
取 ,
m 3,3,1
由(1)知 平面 ,则平面 的法向量 ,
mn 3 13
设二面角
APC D
所成平面角为 ,则cos ,
m n 13
3 13
所以二面角APC D的余弦值为 .································12分
13
20.(1)由已知得 , .··········································1分
k y 2c 2c
设 ,则 MF 2 0 3, .····················3分
k 2c y 2c
MF 0
1
所以椭圆 的方程为 .·············································4分
(2)①当直线 的斜率为0时, 的方程: ,
不妨设 , , ,
数学(理科)答案 3/6
{#{QQABaYSAogCgQoAAABgCQQlwCgAQkAAACIoOxBAAMAAACAFABCA=}#}, , ,
所以 ;·························································5分
②当直线 的斜率不为0时,如图,设 的方程: , , .
由 ,得 .
则 , .·······································7分
,······························10分
又 ,所以 .···············································11分
综上, .所以 , , 成等差数列.····························12分
21.(1)当a=1时, f(x) ex xcosx,x
0,
,
2
f (x) ex cosx xsinx ex cosx xsinx,
∵x 0, ,∴ex e0 1,∴ex cosx0,∵xsinx0, f(x)0,
2
∴ f(x)在 0, 上单调递增,∴ f(x) f(0) 1, f(x) f( ) e2 ,
2 min max 2
∴ f(x)的值域为1,e2. ··················································4分
(2)法一:令h(x) f(x) g(x),
①当a 0时,h(x) ex sinxaxcosx1sinxaxcosx 0在x 0, 上恒
2
成立.····································································6分
②当0 a 1时,
数学(理科)答案 4/6
{#{QQABaYSAogCgQoAAABgCQQlwCgAQkAAACIoOxBAAMAAACAFABCA=}#}h(x)ex cosxaxsinxacosxex axsinx(1a)cosx(1a)cosx0,
∴h(x)在
0,
上单调递增,∴h(x) h(0) 0成立.·························8分
2
③当a 2时,m(x) h(x) ex cosxaxsinxacosx,
m(x) ex (a1)sinxa sinx xcosx 0,
∴m(x)在x 0, 上单调递增,即h(x)在x 0, 上单调递增,
2 2
∴h(0) 2a 0,h( ) e2 a 0,
2 2
∴存在x 0, 使得当x 0,x 时h(x ) 0,故h(x)在x 0,x 上单调递减,
0 2 0 0 0
则h(x ) h(0) 0,不合题意.·············································10分
0
④当1 a 2时,令m(x) h(x) ex cosxaxsinxacosx,
则m(x) ex (a1)sinxa sinx xcosx 0,
∴m(x)在x 0, 上单调递增,即h(x)在x 0, 上单调递增,
2 2
∴h(x) h(0) 2a 0,即h(x)在
0,
上单调递增,h(x) h(0) 0成立.
2
综上,a的取值范围是 ,2 .············································12分
法二:令 ,
,
令 0 11a0得a2.
①当 时, ,
令 ,
,
在 上单调递增, 恒成立.································10分
数学(理科)答案 5/6
{#{QQABaYSAogCgQoAAABgCQQlwCgAQkAAACIoOxBAAMAAACAFABCA=}#}②当 时, , ,
,使 x 0,这与 x 0恒成立矛盾.
0
综上, .······························································12分
22.(1)曲线 是以 为圆心的半圆,
所以半圆的极坐标方程为 ,
曲线 以 为圆心的圆,转换为极坐标方程为 .
故半圆 ,圆 的极坐标方程分别为: , 5分
(2)由(1)得: .
点 到直线 的距离 .
所以 ,
其中 ,当 时, 的面积的最大值为4.···········10分
23.(1)当 时,不等式为 ,
当 时, 可以化为 ,解得 ;
当 时, 可以化为 ,得 ;
当 时, 可以化为 ,解得 ,不等式不成立;
综上,可得不等式 的解集为 ·································5分
(2)当 时,
当 时等号成立,由 可得 (舍)或 ,故 ,
由柯西不等式可得
,即得
当且仅当 时,即 时取等号.·····························10分
数学(理科)答案 6/6
{#{QQABaYSAogCgQoAAABgCQQlwCgAQkAAACIoOxBAAMAAACAFABCA=}#}