当前位置:首页>文档>数学参考答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)数学

数学参考答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)数学

  • 2026-02-16 16:04:43 2026-02-16 16:04:43

文档预览

数学参考答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)数学
数学参考答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)数学
数学参考答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)数学
数学参考答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)数学
数学参考答案_2024年3月_013月合集_2024届山东省青岛市高三年级第一次适应性检测_青岛市2024年高三年级第一次适应性检测(青岛一摸)数学

文档信息

文档格式
pdf
文档大小
0.248 MB
文档页数
5 页
上传时间
2026-02-16 16:04:43

文档内容

2024 年高三年级第一次适应性检测 数学参考答案及评分标准 一、单项选择题:本题共8小题,每小题5分,共40分. 1--8:ADBA CCBA 二、多项选择题:本题共3小题,每小题6分,共18分. 9.AB 10.AC 11.BCD 三、填空题:本题共3个小题,每小题5分,共15分. 51 12.0; 13. ; 14.1 7. 2 四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤. 15. (13分) 解:(1)由题知:各组频率分别为:0.15,0.25,0.3,0.2,0.1······················3分 日均阅读时间的平均数为: 300.15500.25700.3900.21100.167(分钟)······················· 6分 (2)由题意,在[60,80),[80,100),[100,120]三组分别抽取3,2,1人·······················7分 的可能取值为:0,1,2·················································································8分 C3C0 1 则P(0) 4 2  ················································································9分 C3 5 6 C2C1 3 P(1) 4 2  ···············································································10分 C3 5 6 C1C2 1 P(2) 4 2  ·············································································· 11分 C3 5 6 所以的分布列为:  0 1 2 1 3 1 P 5 5 5 1 3 1 E()0 1 2 1······································································13分 5 5 5 16.(15分) x2  x1 解:(1)当a1时, f (x)  , f (x ) 1解得x 1························3分 x 0 0 1 3 又因为 f(1) ,所以切线方程为:x y 0···········································5分 2 2 x2 ax1 (2) f(x)的定义域为(0,), f (x)  ········································6分 x 当a0时,得 f(x)0恒成立, f(x)在(0,)单调递增·································8分 数学评分标准 第1页(共5页) {#{QQABYYCEggigAhBAAQgCEwEICEKQkAACACoOQEAAoAAAyQNABCA=}#}当a 0时,令g(x) x2 ax1,  a2 4····················································9分 (ⅰ)当0即0a2时, f(x)0恒成立, f(x)在(0,)单调递增·········································· 11分 a a24 a a24 (x )(x ) (ⅱ)当 0即a 2时, f(x) 2 2 ···············12分 x a a2 4 a a2 4 由 f(x)0得,0 x 或x , 2 2 a a2 4 a a2 4 由 f(x)0得,  x 2 2 a a2 4 a a2 4 所以 f(x)在(0, ),( ,)单调递增, 2 2 a a2 4 a a2 4 在( , )单调递减···········································14分 2 2 综上:当a2时, f(x)在(0,)单调递增; a a2 4 a a2 4 当a 2时, f(x)在(0, ),( ,)单调递增; 2 2 a a2 4 a a2 4 f(x)在( , )单调递减·······················15分 2 2 17.(15分) 解:(1) 取棱AA中点D,连接BD,因为AB  AB ,所以BD  AA ·················1分 1 1 1 因为三棱柱ABC ABC ,所以AA //BB ······················································2分 1 1 1 1 1 所以BD BB ,所以BD  3·····································································3分 1 因为AB2,所以AD1,AA 2; 1 因为AC 2,AC 2 2 ,所以AC2  AA2  AC2 ,所以AC  AA ,············4分 1 1 1 1 同理AC  AB,·························································································5分 因为AA AB A,且AA,AB平面AABB ,所以AC 平面AABB , 1 1 1 1 1 1 因为AC 平面ABC, z 所以平面AABB 平面ABC ··············6分 A B 1 1 1 1 (2)取AB中点O,连接A 1 O, C 1 取BC中点P,连接OP,则OP// AC, D 由(1)知AC 平面AABB , 1 1 O 所以OP平面AABB ·······················7分 A 1 1 B y 因为AO平面AABB ,AB平面AABB , 1 1 1 1 1 M P 所以OP AO,OP AB, C x 1 因为AB  AA AB ,则AO AB······························································8分 1 1 1 数学评分标准 第2页(共5页) {#{QQABYYCEggigAhBAAQgCEwEICEKQkAACACoOQEAAoAAAyQNABCA=}#}以O为坐标原点,OP,OB,OA 所在的直线为x轴、 y 轴、z轴,建立如图所示的空 1 间直角坐标系Oxyz,则A(0,1,0),A(0,0, 3),B (0,2, 3),C(2,1,0), 1 1 设点N(a,0, 3),(0a2)···········································································9分    AB (0,2,0),AC (2,1, 3),AN (a,1, 3), 1 1 1 1     nAB 0 2y 0 设面ABC的法向量为n(x,y,z),得  1  1 ,得 , 1 1 nAC 0 2x y 3z 0 1  取x 3,则 y 0,z 2,所以n( 3,0,2)·············································10分 设直线AN 与平面ABC所成角为, 1 1     |nAN | 3 a2 则sin|cosn,AN |     |n|| AN | 7 a2 4 3 (a2)2  7 a2 4 3 a2 4a4  ································11分 7 a2 4 21 若a 0,则sin ,·········································································12分 7 3 4 3 4 42 若a0,则sin 1  1  ,·······························13分 7 4 7 4 7 a a 4 当且仅当a ,即a 2时,等号成立,·······················································14分 a 42 所以直线AN 与平面AMB所成角的正弦值的最大值 ·································15分 1 7 18.(17分) 解: (1)设M(x,y),切点为N ,则|MN |2|MW |2|OM |2 |OW |2 , 所以|x2|2 x2  y2 4··············································································3分 化简得 y2 4x,所以C的方程为: y2 4x···················································· 4分     (2)(ⅰ)因为l //l ,所以可设GAGA,GBGB , 1 2  1       又因为GE  (GAGB) (GAGB)GF, 2 2 所以G,E,F 三点共线,同理,H,E,F三点共线, 所以G,E,H 三点共线···················································································6分 (ⅱ)设A(x ,y ),B(x ,y ),A(x ,y ),B(x ,y ) ,AB中点为E,AB中点为F , 1 1 2 2 3 3 4 4 数学评分标准 第3页(共5页) {#{QQABYYCEggigAhBAAQgCEwEICEKQkAACACoOQEAAoAAAyQNABCA=}#}将x ym代入 y2 4x得: y2 4y4m0,所以 y  y 4,y y 4m, 1 2 1 2 y  y 所以 y  1 2 2,同理 y 2(G,E,H,F 均在定直线y 2上)················8分 E 2 F 因为TT//l ,所以EAT 与EAH 面积相等,EBT与EBH 面积相等; 1 所以四边形GTET面积等于四边形GAHB 面积··············································· 10分 设G(x ,2),H(x ,2), G H y  y y  y y2 直线AA: y y  1 3 (xx ) ,即 y y  1 3 (x 1 ), 1 x x 1 1 y2 y2 4 1 3 1  3 4 4 4x y y 2(y  y ) y y 整理得:直线AA: y  1 3 ,又因为 y 2,所以x  1 3 1 3 , y  y G G 4 1 3 4x y y 2(y  y ) y y 同理,直线BA: y  2 3 , y 2,所以x  2 3 2 3 ·············12分 y  y H H 4 2 3 y  y (y  y )( 3 4  y ) (y y )(2y ) 1 2 2 3 所以|GH ||x x | | 1 2 3 | | | G H 4 4 |(y  y )(y  y )|  1 2 3 4 ····························14分 8 1 (y  y )2| y  y | 所以四边形GAHB 面积S  |GH || y  y | 1 2 3 4 2 1 2 16 [(y  y )24y y ] (y  y )24y y  1 2 1 2 3 4 3 4 16 (1616m) 1616n  16 4 (1m)2(1n) (1m)2 1n 4[ ]2(2m2 2mn)16············16分 2 m2 2mn m1 当且仅当(1m)2 1n,即 ,即 时取等号, nm2 2m6 n3 所以GAT 面积的最大值为16······································································17分 数学评分标准 第4页(共5页) {#{QQABYYCEggigAhBAAQgCEwEICEKQkAACACoOQEAAoAAAyQNABCA=}#}19.(17分) 解:(1)因为m x3 (ab a b a b a b )x3 , 4 1 4 2 3 3 2 4 1 所以m ab a b a b a b ··································································· 4分 4 1 4 2 3 3 2 4 1 (2)因为 f({a }{b }) f({a }) f({b }) , n n n n 所以 f({a }) f({b }) f({c }) f({a }{b }) f({c }) f(({a }{b }){c }) , n n n n n n n n n 又因为 f({a }) f({b }) f({c }) f({a })[f({b }) f({c })] n n n n n n  f({a }) f({b }{c }) n n n  f({a }({b }{c })) n n n 所以 f(({a }{b }) f{c }) f({a }({b } f{c })) n n n n n n 所以({a }{b }){c }{a }({b }{c }) ···············································10分 n n n n n n (3)对于{a },{b }S , n n 因为(a a xa xn1)(b b xb xn1)d d xd xn1 1 2 n 1 2 n 1 2 n 所以d xn1 a (b xn1)a xk1(b xnk)a xn2(b x)a xn1b , n 1 n k n1k n1 2 n 1 所以d ab a b a b a b a b , n 1 n 2 n1 k n1k n1 2 n 1 n 所以{a }{b }{d }{a b }····························································13分 n n n k n1k k1 200 100 200 100 100 (k1)2 1 d a b a b   a b a b  ·········14分 200 k 201k k 201k k 201k k 201k k(k 1)2k2 k1 k1 k101 k1 k1 100 1 2 1 所以d  (1  ) 200 2k2 k k 1 k1 100 1 100 1 1  [  ] 2k2 k2k1 (k1)2k2 k1 k1 1 102 1    ········································································17分 2 1012102 2 数学评分标准 第5页(共5页) {#{QQABYYCEggigAhBAAQgCEwEICEKQkAACACoOQEAAoAAAyQNABCA=}#}