当前位置:首页>文档>四川省绵阳市2024-2025学年高二上学期期末教学质量测试数学试题参考答案_2024-2025高二(7-7月题库)_2025年02月试卷_0210四川省绵阳市2024-2025学年高二上学期期末考试试题

四川省绵阳市2024-2025学年高二上学期期末教学质量测试数学试题参考答案_2024-2025高二(7-7月题库)_2025年02月试卷_0210四川省绵阳市2024-2025学年高二上学期期末考试试题

  • 2026-02-18 01:34:32 2026-02-18 01:34:32

文档预览

四川省绵阳市2024-2025学年高二上学期期末教学质量测试数学试题参考答案_2024-2025高二(7-7月题库)_2025年02月试卷_0210四川省绵阳市2024-2025学年高二上学期期末考试试题
四川省绵阳市2024-2025学年高二上学期期末教学质量测试数学试题参考答案_2024-2025高二(7-7月题库)_2025年02月试卷_0210四川省绵阳市2024-2025学年高二上学期期末考试试题
四川省绵阳市2024-2025学年高二上学期期末教学质量测试数学试题参考答案_2024-2025高二(7-7月题库)_2025年02月试卷_0210四川省绵阳市2024-2025学年高二上学期期末考试试题
四川省绵阳市2024-2025学年高二上学期期末教学质量测试数学试题参考答案_2024-2025高二(7-7月题库)_2025年02月试卷_0210四川省绵阳市2024-2025学年高二上学期期末考试试题
四川省绵阳市2024-2025学年高二上学期期末教学质量测试数学试题参考答案_2024-2025高二(7-7月题库)_2025年02月试卷_0210四川省绵阳市2024-2025学年高二上学期期末考试试题
四川省绵阳市2024-2025学年高二上学期期末教学质量测试数学试题参考答案_2024-2025高二(7-7月题库)_2025年02月试卷_0210四川省绵阳市2024-2025学年高二上学期期末考试试题

文档信息

文档格式
pdf
文档大小
0.276 MB
文档页数
6 页
上传时间
2026-02-18 01:34:32

文档内容

高中 2023 级第三学期末教学质量测试 数学参考答案及评分标准 一、选择题:本题共8小题,每小题5分,共40分. 1.B 2.A 3.C 4.D 5.B 6.C 7.B 8.D 二、选择题:本大题共3小题,每小题6分,共18分。在每小题给出的四个选项中, 有多项符合题目要求。全部选对的得6分,选对但不全的得部分分,有选错的得0 分. 9.BD 10.ACD 11.BCD 三、填空题:本题共3个小题,每小题5分,共15分. 11 15 12.3; 13. (或0.275); 14. 40 3 四、解答题:本题共5小题,第15题13分,第16、17小题15分,第18、19小题17 分,共77分.解答应写出文字说明、证明过程或演算步骤. 15.解:(1)由概率之和为1,可得100a+0.12+0.18+0.3+0.12+0.06=1··············2分 解得a0.0022,···········································································4分 估计平均数为: 0.121000.182000.33000.224000.12500+0.06600 322;··7分 (2)(M 350)0.00220.120.180.30.71,·······························10分 ∴M 35050,解得M 400.····················································13分 16.解:(1)∵C(6,5),D(6,5)都在圆E上,线段CD的中垂线即x轴, ∴不妨设圆心E(x,0),·································································2分 又∵半径r  AE CE ,即 (x1)2  (x6)2 52 ,·······················4分 可解x 6,r 5,·······································································6分 ∴圆E的标准方程为(x6)2  y2 25;···········································7分 (2)不妨设点N(x,y),则 x2  y2 2 (x3)2  y2 ,························9分 化简可得(x4)2  y2 4,··························································12分 所以点N的轨迹为以F(4,0)为圆心,以2为半径的圆F,··················13分 ∵EF 642523,······················································· 14分 ∴圆E与圆F两圆内含,即两圆不存在公共点N满足题意.················15分 高二数学参考答案 第1页,共6页 {#{QQABJYCQggggAgAAABhCAQmiCEAQkBCCCYgORAAUoAAAiQFABAA=}#}17.解:(1)抛掷骰子两次,样本空间基本事件总数为36,························· 2分 事假A=“两次点数之和大于9”,包含6个基本事件, 分别是(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),······················4分 6 1 ∴P(A)  ;·······································································6分 36 6 (2)闯第1关时,抛掷骰子一次,样本空间基本事件总数为6,············7分 点数之和大于M=3n n2的基本事件为2,3,4,5,6,·················· 8分 5 故闯过第1关的概率为P  ;·······················································9分 1 6 闯第2关时,抛掷骰子两次,样本空间基本事件总数为36, 点数之和大于M=3n n7的基本事件为: (1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,3),(4,4),(4,5), (4,6),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3), (6,4),(6,5),(6,6),·······························································11分 21 7 共计14个,故闯过第2关的概率为P   ;····························12分 2 36 12 因每次闯关互不影响,则闯过第1关和闯过第2关两个事件相互独立,故由独立 5 7 35 1 事件乘法公式得概率为    ,·········································· 14分 6 12 72 2 所以甲胜的概率小于乙胜的概率,游戏不公平.································15分 18.解:(1)证明:如图,连接AC,取AB边中点G,连接CG,EG, ∵CA=CB,EA=EB, ∴CG⊥AB,EG⊥AB,···································································1分 又∵CG,EG平面CGE,且AB平面CGE, ∴AB⊥平面CGE,········································································2分 又CE平面CGE,所以CE⊥AB, 高二数学参考答案 第2页,共6页 {#{QQABJYCQggggAgAAABhCAQmiCEAQkBCCCYgORAAUoAAAiQFABAA=}#}易知△ABC为等边三角形,因此AC=2, 在△ACD中,AC2  AD2 CD2,且AC=AD, ∴△ACD是等腰直角三角形,且AC⊥AD.········································3分 又因为AE⊥AD,且AE,AC平面ACE,AD平面ACE, ∴AD⊥平面ACE, 又CE平面ACE,所以AD⊥CE,··················································4分 又因为AB,AD平面ABCD,且CE平面ABCD, 所以CE⊥平面ABCD;··································································5分 方法二:如上图,在△ACD中,AC2  AD2 CD2,且AC=AD, ∴△ACD是等腰直角三角形,且AC⊥AD,········································1分 又AE⊥AD,则DE=4, 以点A为坐标原点,AC,AD所在的直线分别为x,y轴,建立空间直角坐标系, ∴A(0,0,0),B(1,− 3,0),C(2,0,0),D(0,2,0), 设E(x,y,z),由DE=4,AE=BE=2 3,··········································2分 x2  y2 z2 12  ∴(x1)2 (y 3)2 z2 12,解得:E(2,0,2 2),······················3分   x2 (y2)2 z2 16    ∴CE (0,0,2 2),又AB(1, 3,0),AC (2,0,0),     ∴CEAB0,CEAC 0,则CE⊥AB,CE⊥AC,·························4分 又因为AB,AD平面ABCD,且CE平面ABCD, 所以CE⊥平面ABCD;··································································5分 (2)以点A为坐标原点,AC、AD所在的直线分别为x,y轴,建立空间直角坐标 系,A(0,0,0),B(1,− 3,0),C(2,0,0),D(0,2,0),E(2,0,2 2), M(1,0, 2 ),············································································7分   ∴CM (1,0,2),BC (1, 3,0),············································8分   ∴M到直线BC的距离为: C  M  2 ( CM    BC )2  3( 1 )2  11 ;···10分 |BC| 2 2   (3)令EN ED=(2,2,2 2)(2,2,2 2),    则AN  AEEN (22,2,2 22 2),·································11分 高二数学参考答案 第3页,共6页 {#{QQABJYCQggggAgAAABhCAQmiCEAQkBCCCYgORAAUoAAAiQFABAA=}#}由(1)可知,平面ACE的一个法向量为n=(0,1,0),······················12分 设直线AN与平面ACE所成角为θ,  |ANn| |2| 13 ∴sinθ=    ··········· 13分 , |AN||n| (22)2 (2)2 (2 22 2)2 13 1 解得 ,···············································································14分 3   4 2 4 2 4 2 4 2 ∴N( , , ),AN ( , , ),AC (2,0,0), 3 3 3 3 3 3 设平面ACN的法向量为n (x,y,z), 1 4 2 4 2  x y+ z0 ∴3 3 3 ,不妨设z1,则y2 2,  2x0 ∴平面ACN的一个法向量n (0,2 2,1),····································15分 1 又平面ACE的一个法向量为n=(0,1,0), 设二面角E-AC-N的平面角为α, |n n| 2 2 2 2 ∴|cos| 1   ,················································· 16分 |n ||n| 31 3 1 2 2 ∴二面角E-AC-N的平面角的余弦值 .·····································17分 3 b2 3 b2 1 19.解:(1)由e 1  ,可得  ,即a2 4b2,·························2分 a2 2 a2 4 x2 y2 ∴椭圆C方程为:  1,·························································3分 4b2 b2 4b21 令x1时,y2  ,MN  4b21 3 ,解得:b2 1,···················4分 4 x2 故椭圆C的方程为: y2 1;························································5分 4 (2)设直线l:x=ty+1,M(x,y ),N(x ,y ) ,P(1,0), 1 1 2 2   ∴x ty 1,x ty 1,PM=(x 1,y ),PN=(x 1,y ) ,·························6分 1 1 2 2 1 1 2 2   则|PM||PN|PMPN (x 1)(x 1)y y =(t21)y y ,·······················7分 1 2 1 2 1 2 x2 联立直线PM:x=ty−1,与椭圆C方程: y2 1, 4 高二数学参考答案 第4页,共6页 {#{QQABJYCQggggAgAAABhCAQmiCEAQkBCCCYgORAAUoAAAiQFABAA=}#}xty1  x2 ,整理得到:(t24)y22ty30 ,·····································8分  y2 1  4 3 3(t21) 3 由韦达定理可得:y y  ,代入得:  , 1 2 t24 t24 2 解得:t2 2,t  2,···································································9分 故直线l 的方程为x 2y10或x 2y10;································10分 y x 2 (3)设Q(x,y ),则k  0 ,则直线QA方程可设为:x 0 y2, 0 0 QA x 2 y 0 0  x 2 x 0 y2  y (x 2)2 x 2 联立 0 ,可得:( 0 4)y24 0 y0 , x2 y2 1 y 0 2 y 0   4 4(x 2) 0 y 解得点S的纵坐标为:y  0 ,············································11分 S (x 2)2 0 4 y2 0 x2 y2 又点Q(x,y )在椭圆C :  1上,则x24y2 8,代入化简得到: 0 0 1 8 2 0 0 4(x 2) 0 y 4(x 2)y (x 2)y x 2 x22x 2 y  0 = 0 0  0 0 ,则x  0 y 2= 0 0 S (x 2)2 (x 2)24y2 x 3 S y S x 3 0 4 0 0 0 0 0 y2 0 x22x 2 (x 2)y x22x 2 (x 2)y 故S( 0 0 , 0 0), 同理:T( 0 0 , 0 0) ················13分 x 3 x 3 x 3 x 3 0 0 0 0   设OS (x,y ),OT (x ,y ) ,则 1 1 2 2         1 1 S  OS OT sinOS,OT  OS OT  1cos2OS,OT  OST 2 2   1   OSOT  OS OT  1(  )2 2 OS OT 1 xx y y = x2y2  x2y2  1( 1 2 1 2 )2 2 1 1 2 2 x2y2  x2y2 1 1 2 2 1 (x2y2)(x2y2)(xx y y )2 1  x2 y2 x2 y2 1 1 2 2 1 2 1 2 = x y x y ·········15分 2 1 1 2 2 (x2y2)(x2y2) 2 1 2 2 1 1 1 2 2 高二数学参考答案 第5页,共6页 {#{QQABJYCQggggAgAAABhCAQmiCEAQkBCCCYgORAAUoAAAiQFABAA=}#}1 x22x 2 (x 2)y x22x 2 (x 2)y 4 y 4 y = 0 0  0 0  0 0  0 0  0  0 2 x 3 x 3 x 3 x 3 x29 84y29 0 0 0 0 0 0 = 4 y 0  4  4 =1 ,················································16分 4y2 1 1 1 0 4 y  2 4 y  0 y 0 y 0 0 1 1 (当且仅当4|y | ,即| y | 时,等号成立) 0 |y | 0 2 0 综上所述:△OST面积的最大值为1.················································17分 高二数学参考答案 第6页,共6页 {#{QQABJYCQggggAgAAABhCAQmiCEAQkBCCCYgORAAUoAAAiQFABAA=}#}