文档内容
高中 2023 级第三学期末教学质量测试
数学参考答案及评分标准
一、选择题:本题共8小题,每小题5分,共40分.
1.B 2.A 3.C 4.D 5.B 6.C 7.B 8.D
二、选择题:本大题共3小题,每小题6分,共18分。在每小题给出的四个选项中,
有多项符合题目要求。全部选对的得6分,选对但不全的得部分分,有选错的得0
分.
9.BD 10.ACD 11.BCD
三、填空题:本题共3个小题,每小题5分,共15分.
11 15
12.3; 13. (或0.275); 14.
40 3
四、解答题:本题共5小题,第15题13分,第16、17小题15分,第18、19小题17
分,共77分.解答应写出文字说明、证明过程或演算步骤.
15.解:(1)由概率之和为1,可得100a+0.12+0.18+0.3+0.12+0.06=1··············2分
解得a0.0022,···········································································4分
估计平均数为:
0.121000.182000.33000.224000.12500+0.06600 322;··7分
(2)(M 350)0.00220.120.180.30.71,·······························10分
∴M 35050,解得M 400.····················································13分
16.解:(1)∵C(6,5),D(6,5)都在圆E上,线段CD的中垂线即x轴,
∴不妨设圆心E(x,0),·································································2分
又∵半径r AE CE ,即 (x1)2 (x6)2 52 ,·······················4分
可解x 6,r 5,·······································································6分
∴圆E的标准方程为(x6)2 y2 25;···········································7分
(2)不妨设点N(x,y),则 x2 y2 2 (x3)2 y2 ,························9分
化简可得(x4)2 y2 4,··························································12分
所以点N的轨迹为以F(4,0)为圆心,以2为半径的圆F,··················13分
∵EF 642523,······················································· 14分
∴圆E与圆F两圆内含,即两圆不存在公共点N满足题意.················15分
高二数学参考答案 第1页,共6页
{#{QQABJYCQggggAgAAABhCAQmiCEAQkBCCCYgORAAUoAAAiQFABAA=}#}17.解:(1)抛掷骰子两次,样本空间基本事件总数为36,························· 2分
事假A=“两次点数之和大于9”,包含6个基本事件,
分别是(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),······················4分
6 1
∴P(A) ;·······································································6分
36 6
(2)闯第1关时,抛掷骰子一次,样本空间基本事件总数为6,············7分
点数之和大于M=3n n2的基本事件为2,3,4,5,6,·················· 8分
5
故闯过第1关的概率为P ;·······················································9分
1 6
闯第2关时,抛掷骰子两次,样本空间基本事件总数为36,
点数之和大于M=3n n7的基本事件为:
(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,3),(4,4),(4,5),
(4,6),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),
(6,4),(6,5),(6,6),·······························································11分
21 7
共计14个,故闯过第2关的概率为P ;····························12分
2 36 12
因每次闯关互不影响,则闯过第1关和闯过第2关两个事件相互独立,故由独立
5 7 35 1
事件乘法公式得概率为 ,·········································· 14分
6 12 72 2
所以甲胜的概率小于乙胜的概率,游戏不公平.································15分
18.解:(1)证明:如图,连接AC,取AB边中点G,连接CG,EG,
∵CA=CB,EA=EB,
∴CG⊥AB,EG⊥AB,···································································1分
又∵CG,EG平面CGE,且AB平面CGE,
∴AB⊥平面CGE,········································································2分
又CE平面CGE,所以CE⊥AB,
高二数学参考答案 第2页,共6页
{#{QQABJYCQggggAgAAABhCAQmiCEAQkBCCCYgORAAUoAAAiQFABAA=}#}易知△ABC为等边三角形,因此AC=2,
在△ACD中,AC2 AD2 CD2,且AC=AD,
∴△ACD是等腰直角三角形,且AC⊥AD.········································3分
又因为AE⊥AD,且AE,AC平面ACE,AD平面ACE,
∴AD⊥平面ACE,
又CE平面ACE,所以AD⊥CE,··················································4分
又因为AB,AD平面ABCD,且CE平面ABCD,
所以CE⊥平面ABCD;··································································5分
方法二:如上图,在△ACD中,AC2 AD2 CD2,且AC=AD,
∴△ACD是等腰直角三角形,且AC⊥AD,········································1分
又AE⊥AD,则DE=4,
以点A为坐标原点,AC,AD所在的直线分别为x,y轴,建立空间直角坐标系,
∴A(0,0,0),B(1,− 3,0),C(2,0,0),D(0,2,0),
设E(x,y,z),由DE=4,AE=BE=2 3,··········································2分
x2 y2 z2 12
∴(x1)2 (y 3)2 z2 12,解得:E(2,0,2 2),······················3分
x2 (y2)2 z2 16
∴CE (0,0,2 2),又AB(1, 3,0),AC (2,0,0),
∴CEAB0,CEAC 0,则CE⊥AB,CE⊥AC,·························4分
又因为AB,AD平面ABCD,且CE平面ABCD,
所以CE⊥平面ABCD;··································································5分
(2)以点A为坐标原点,AC、AD所在的直线分别为x,y轴,建立空间直角坐标
系,A(0,0,0),B(1,− 3,0),C(2,0,0),D(0,2,0),E(2,0,2 2),
M(1,0, 2 ),············································································7分
∴CM (1,0,2),BC (1, 3,0),············································8分
∴M到直线BC的距离为: C M 2 ( CM BC )2 3( 1 )2 11 ;···10分
|BC| 2 2
(3)令EN ED=(2,2,2 2)(2,2,2 2),
则AN AEEN (22,2,2 22 2),·································11分
高二数学参考答案 第3页,共6页
{#{QQABJYCQggggAgAAABhCAQmiCEAQkBCCCYgORAAUoAAAiQFABAA=}#}由(1)可知,平面ACE的一个法向量为n=(0,1,0),······················12分
设直线AN与平面ACE所成角为θ,
|ANn| |2| 13
∴sinθ= ··········· 13分
,
|AN||n| (22)2 (2)2 (2 22 2)2 13
1
解得 ,···············································································14分
3
4 2 4 2 4 2 4 2
∴N( , , ),AN ( , , ),AC (2,0,0),
3 3 3 3 3 3
设平面ACN的法向量为n (x,y,z),
1
4 2 4 2
x y+ z0
∴3
3 3
,不妨设z1,则y2 2,
2x0
∴平面ACN的一个法向量n (0,2 2,1),····································15分
1
又平面ACE的一个法向量为n=(0,1,0),
设二面角E-AC-N的平面角为α,
|n n| 2 2 2 2
∴|cos| 1 ,················································· 16分
|n ||n| 31 3
1
2 2
∴二面角E-AC-N的平面角的余弦值 .·····································17分
3
b2 3 b2 1
19.解:(1)由e 1 ,可得 ,即a2 4b2,·························2分
a2 2 a2 4
x2 y2
∴椭圆C方程为: 1,·························································3分
4b2 b2
4b21
令x1时,y2 ,MN 4b21 3 ,解得:b2 1,···················4分
4
x2
故椭圆C的方程为: y2 1;························································5分
4
(2)设直线l:x=ty+1,M(x,y ),N(x ,y ) ,P(1,0),
1 1 2 2
∴x ty 1,x ty 1,PM=(x 1,y ),PN=(x 1,y ) ,·························6分
1 1 2 2 1 1 2 2
则|PM||PN|PMPN (x 1)(x 1)y y =(t21)y y ,·······················7分
1 2 1 2 1 2
x2
联立直线PM:x=ty−1,与椭圆C方程: y2 1,
4
高二数学参考答案 第4页,共6页
{#{QQABJYCQggggAgAAABhCAQmiCEAQkBCCCYgORAAUoAAAiQFABAA=}#}xty1
x2 ,整理得到:(t24)y22ty30 ,·····································8分
y2 1
4
3 3(t21) 3
由韦达定理可得:y y ,代入得: ,
1 2 t24 t24 2
解得:t2 2,t 2,···································································9分
故直线l 的方程为x 2y10或x 2y10;································10分
y x 2
(3)设Q(x,y ),则k 0 ,则直线QA方程可设为:x 0 y2,
0 0 QA x 2 y
0 0
x 2
x 0 y2
y (x 2)2 x 2
联立 0 ,可得:( 0 4)y24 0 y0 ,
x2
y2 1
y
0
2 y
0
4
4(x 2)
0
y
解得点S的纵坐标为:y 0 ,············································11分
S (x 2)2
0 4
y2
0
x2 y2
又点Q(x,y )在椭圆C : 1上,则x24y2 8,代入化简得到:
0 0 1 8 2 0 0
4(x 2)
0
y 4(x 2)y (x 2)y x 2 x22x 2
y 0 = 0 0 0 0 ,则x 0 y 2= 0 0
S (x 2)2 (x 2)24y2 x 3 S y S x 3
0 4 0 0 0 0 0
y2
0
x22x 2 (x 2)y x22x 2 (x 2)y
故S( 0 0 , 0 0), 同理:T( 0 0 , 0 0) ················13分
x 3 x 3 x 3 x 3
0 0 0 0
设OS (x,y ),OT (x ,y ) ,则
1 1 2 2
1 1
S OS OT sinOS,OT OS OT 1cos2OS,OT
OST 2 2
1 OSOT
OS OT 1( )2
2 OS OT
1 xx y y
= x2y2 x2y2 1( 1 2 1 2 )2
2 1 1 2 2 x2y2 x2y2
1 1 2 2
1 (x2y2)(x2y2)(xx y y )2 1
x2 y2 x2 y2 1 1 2 2 1 2 1 2 = x y x y ·········15分
2 1 1 2 2 (x2y2)(x2y2) 2 1 2 2 1
1 1 2 2
高二数学参考答案 第5页,共6页
{#{QQABJYCQggggAgAAABhCAQmiCEAQkBCCCYgORAAUoAAAiQFABAA=}#}1 x22x 2 (x 2)y x22x 2 (x 2)y 4 y 4 y
= 0 0 0 0 0 0 0 0 0 0
2 x 3 x 3 x 3 x 3 x29 84y29
0 0 0 0 0 0
= 4 y 0 4 4 =1 ,················································16分
4y2 1 1 1
0 4 y 2 4 y
0 y 0 y
0 0
1 1
(当且仅当4|y | ,即| y | 时,等号成立)
0 |y | 0 2
0
综上所述:△OST面积的最大值为1.················································17分
高二数学参考答案 第6页,共6页
{#{QQABJYCQggggAgAAABhCAQmiCEAQkBCCCYgORAAUoAAAiQFABAA=}#}