当前位置:首页>文档>新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总

新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总

  • 2026-02-17 03:14:20 2026-02-17 03:04:45

文档预览

新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总
新题型新高考新结构二十一大考点汇总(解析版)(1)_2024年4月_01按日期_6号_2024届新结构高考数学合集_新高考19题(九省联考模式)数学合集140套_2024年新高考新结构考点汇总

文档信息

文档格式
pdf
文档大小
31.953 MB
文档页数
83 页
上传时间
2026-02-17 03:04:45

文档内容

新题型 新高考新结构二十一大考点汇总 命题趋势 高考数学全国卷的考查内容、考查范围和考查要求层次与比例均与课程标准保持致注重考查内容的全面性的 同时,突出主干、重点内容的考查,通过依标施考,引导中学教学依标施教。 调整布局,打破固化模式。高考数学坚持稳中有变,通过调整试卷结构,改变相对固化的试题布局优化试题设 计,减少学生反复刷题、机械训练的收益,竭力破除复习备考中题海战术和题型套路,发挥引导作用。 热考题型解读 题型1 集合新考点 题型2 复数新考点 题型3 函数选图题新考点 题型4 比较大小新考点 题型5 数列小题新考点 题型6 排列组合小题新考点 题型7 圆锥曲线小题新考点 题型8 导数周期与对称新考点 题型9 抽象函数类新考点 题型10 函数导数新考点 题型11 不等式新考点 题型12 立体几何小题新考点 题型13 统计概率小题新考点 题型14 三角函数小题新考点 题型15 实际应用相关新考点 题型16 三角函数解答题新考点 题型17 立体几何解答题新考点 题型18 数列解答题新考点 题型19 统计概率解答题新考点 题型20 圆锥曲线解答题新考点 题型21 九省联考类19题 1【题型1集合新考点】 1 (2024·浙江温州·高三期末)设集合U=R,A= x2xx-2 2    <1   ,B=xy=ln(1-x)  ,则图中阴影部分表 示的集合为 ( ) A.{x|x≥1} B.{x|1≤x<2} C.{x|00,解得x<1, 所以B=xx<1  则由韦恩图可知阴影部分表示∁ A U  ∩B ={x|x≤0}. 故选:D. 【变式训练】 1 (2024·安徽省·高三模拟)(多选)下列选项中的两个集合相等的有( ). A.P=x∣x=2n,n∈Z  ,Q= x∣x=2n+1   ,n∈Z  B.P=x∣x=2n-1,n∈N +  ,Q=x∣x=2n+1,n∈N +  C.P=x∣x2-x=0  1+(-1)n  ,Q=x∣x= ,n∈Z 2  D.P=x∣y=x+1  ,Q= x,y   ∣y=x+1  【答案】AC 【分析】分析各对集合元素的特征,即可判断. 【详解】解:对于A:集合P=x∣x=2n,n∈Z  表示偶数集,集合Q= x∣x=2n+1   ,n∈Z  也表示偶数 集,所以P=Q,故A正确; 对于B:P=x∣x=2n-1,n∈N +  =1,3,5,7,⋯  , Q=x∣x=2n+1,n∈N +  =3,5,7,9,⋯  ,所以P≠Q,故B错误; 对于C:P=x∣x2-x=0  =0,1  ,又(-1)n=   1,n为偶数 , -1,n为奇数 所以x= 1+(-1)n =   1,n为偶数 ,即Q=  x∣x= 1+(-1)n ,n∈Z 2 0,n为奇数 2  =0,1  ,所以P=Q,故C正确; 对于D:集合P=x∣y=x+1  =R为数集,集合Q= x,y   ∣y=x+1  为点集,所以P≠Q,故D错误; 故选:AC 2 (2024·江苏四校联合·高三期末)设全集为U定义集合A与B的运算:A*B=x|x∈A∪B 且 x∉A∩B  ,则(A*B)*A= ( ) A.A B.B C.A∩∁ B D.B∩∁ A U U 【答案】B【解析】根据定义用交并补依次化简集合,即得结果. 【详解】∵A*B=x|x∈A∪B 且x∉A∩B 3  =(B∩∁ A)∪(A∩∁ B) U U ∴(A*B)*A=[A∩∁ (A*B)]∪[(A*B)∩∁ A]=(A∩B)∪(B∩∁ A)=B U U U 故选:B 【点睛】本题考查集合新定义、集合交并补概念,考查基本分析转化能力,属中档题. 3 (2024·江苏南通·高三期末)定义集合运算A⊙B=z|z=xy(x+y),x∈A,y∈B  ,集合A=0,1  ,B =2,3  ,则集合A⊙B所有元素之和为 【答案】18 【分析】由题意可得z=0,6,12,进而可得结果. 【详解】当x=0,y=2,∴z=0 当x=1,y=2,∴z=6 当x=0,y=3,∴z=0 当x=1,y=3,∴z=12 和为0+6+12=18 故答案为:18 4 (2024·江苏南通·高三期末)已知X为包含v个元素的集合(v∈N*,v≥3).设A为由X的一些三元 子集(含有三个元素的子集)组成的集合,使得X中的任意两个不同的元素,都恰好同时包含在唯一的一个三 元子集中,则称X,A  组成一个v阶的Steiner三元系.若X,A  为一个7阶的Steiner三元系,则集合A 中元素的个数为 . 【答案】7 【分析】令X={a,b,c,d,e,f,g},列举出所有三元子集,结合X,A  组成v阶的Steiner三元系定义,确定A中 元素个数. 【详解】由题设,令集合X={a,b,c,d,e,f,g},共有7个元素, 所以X的三元子集,如下共有35个: {a,b,c}、{a,b,d}、{a,b,e}、{a,b,f}、{a,b,g}、{a,c,d}、{a,c,e}、{a,c,f}、{a,c,g}、{a,d,e}、{a,d,f}、{a,d, g}、{a,e,f}、{a,e,g}、{a,f,g}、{b,c,d}、{b,c,e}、{b,c,f}、{b,c,g}、{b,d,e}、{b,d,f}、{b,d,g}、{b,e,f}、{b,e, g}、{b,f,g}、{c,d,e}、{c,d,f}、{c,d,g}、{c,e,f}、{c,e,g}、{c,f,g}、{d,e,f}、{d,e,g}、{d,f,g}、{e,f,g}, 因为A中集合满足X中的任意两个不同的元素,都恰好同时包含在唯一的一个三元子集,所以A中元素满 足要求的有: {a,b,c}、{a,d,e}、{a,f,g}、{b,d,f}、{b,e,g}、{c,d,g}、{c,e,f},共有7个; {a,b,c}、{a,d,f}、{a,e,g}、{b,d,e}、{b,f,g}、{c,d,g}、{c,e,f},共有7个; {a,b,c}、{a,d,g}、{a,e,f}、{b,d,e}、{b,f,g}、{c,d,f}、{c,e,g},共有7个; {a,b,d}、{a,c,e}、{a,f,g}、{b,c,f}、{b,e,g}、{c,d,g}、{d,e,f},共有7个; {a,b,d}、{a,c,g}、{a,e,f}、{b,c,e}、{b,f,g}、{c,d,f}、{d,e,g},共有7个; {a,b,d}、{a,c,f}、{a,e,g}、{b,c,e}、{b,f,g}、{c,d,g}、{d,e,f},共有7个; {a,b,e}、{a,c,d}、{a,f,g}、{b,c,f}、{b,d,g}、{c,e,g}、{d,e,f},共有7个; {a,b,e}、{a,c,f}、{a,d,g}、{b,c,d}、{b,f,g}、{c,e,g}、{d,e,f},共有7个; {a,b,e}、{a,c,g}、{a,d,f}、{b,c,d}、{b,f,g}、{c,e,f}、{d,e,g},共有7个; {a,b,f}、{a,c,d}、{a,e,g}、{b,c,e}、{b,d,g}、{c,f,g}、{d,e,f},共有7个; {a,b,f}、{a,c,e}、{a,d,g}、{b,c,d}、{b,e,g}、{c,f,g}、{d,e,f},共有7个; {a,b,f}、{a,c,g}、{a,d,e}、{b,c,d}、{b,e,g}、{c,e,f}、{d,f,g},共有7个; {a,b,g}、{a,c,d}、{a,e,f}、{b,c,e}、{b,d,f}、{c,f,g}、{d,e,g},共有7个;{a,b,g}、{a,c,e}、{a,d,f}、{b,c,d}、{b,e,f}、{c,f,g}、{d,e,g},共有7个; {a,b,g}、{a,c,f}、{a,d,e}、{b,c,d}、{b,e,f}、{c,e,g}、{d,f,g},共有7个; 共有15种满足要求的集合A,但都只有7个元素. 故答案为:7 【题型2复数新考点】 1 3 1 (2023·全国·统考模拟预测)已知复数z= + i 2 2 4  n ,n∈N*且z>0,则n的最小值为 ( ) A.1 B.3 C.6 D.9 【答案】C 1 3 【分析】计算出 + i 2 2  n n=2,3,4,5,6  的值,即可得解. 1 3 【详解】因为 + i 2 2  2 1 3 3 1 3 = - + i=- + i, 4 4 2 2 2 1 3  + i 2 2  3 1 3 =- + i 2 2  1 3  + i 2 2  3 1 =- - =-1, 4 4 1 3  + i 2 2  4 1 3 =- + i 2 2  1 3 =- - i, 2 2 1 3  + i 2 2  5 1 3 =- + i 2 2  1 3  + i 2 2  1 3 =-- + i 2 2  1 3 = - i, 2 2 1 3  + i 2 2  6 1 3 = - i 2 2  1 3 ⋅ + i 2 2  1 3 = -- 4 4  =1, 所以,当n=6时,z>0,故n的最小值为6. 故选:C. 【变式训练】 i2023 1 (多选)(2024上·云南·高三校联考阶段练习)若复数z= ,则 ( ) 1-2i  2+i 5 A.z的共轭复数z= B.|z|= 5 5 1 C.复数z的虚部为- i D.复数z在复平面内对应的点在第四象限 5 【答案】ABD 【分析】首先化简复数z,再根据复数的相关概念,即可判断选项. i2023 i2023 -i -i(1+2i) 2 i  2+i 【详解】∵z= , ∴z= = = = - ,则z= ,故A正确; 1-2i 1-2i 1-2i (1-2i)(1+2i) 5 5 5 2 |z|=  5  2 1 +- 5  2 5 1 = ,故B正确;复数z的虚部为- ,故C错误; 5 5 2 1 复数z在复平面内对应的点为 , - 5 5  ,在第四象限,故D正确. 故选:ABD 2 (多选)(2024上·江西宜春·高三上高二中校考阶段练习)设z为复数,则下列命题中正确的是 ( )   A. z 2=zz B.若z=(1-2i)2,则复平面内z对应的点位于第二象限 C.z2=z 2 D.若z=1,则z+i的最大值为2 【答案】ABD 【分析】利用复数的四则运算,复数模的性质逐个选项分析即可.    【详解】对于A,设z=a+bi,故z=a-bi,则z 2=a2+b2,zz=(a+bi)(a-bi)=a2+b2,故z 2=zz成立,故 A正确,  对于B,z=(1-2i)2=-4i-3,z=4i-3,显然复平面内z对应的点位于第二象限,故B正确, 对于C,易知z 2=a2+b2,z2=a2+b2+2abi,当ab≠0时,z2≠z 2,故C错误, 对于D,若z=1,则a2+b2=1,而z+i= a2+(b+1)2= 2b+2,易得当b=1时,z+i最大,此时z+i =2,故D正确. 故选:ABD  3 (多选)(2024上·云南德宏·高三统考期末)已知z是复数z的共轭复数,则下列说法正确的是 ( )  A.z⋅z=z2 B.若|z|=1,则z=±1   C.|z⋅z|=|z|⋅|z| D.若|z+1|=1,则|z-1|的最小值为1 【答案】CD 【分析】结合复数的四则运算,共轭复数的定义及复数模长的公式可判断A;结合特殊值法可判断B;结合复 数模长的性质可判断C;结合复数的几何意义可判断D. 【详解】对于 A,设 z = a + bia,b∈R 5   ,则 z ⋅ z = a+bi  a-bi  = a2+b2= z 2,但 z2= a+bi  2= a+bi  a+bi  =a2+2abi-b2,故A错误; 对于B,令z=i,满足z=i=1,故B错误; 对于C,设z=a+bia,b∈R    ,则z=a-bi所以z⋅z=a+bi  a-bi   =a2+b2,则|z⋅z|=a2+b2 =a2+b2    |z|⋅|z|= a2+b2⋅ a2+b2=a2+b2,所以|z⋅z|=|z|⋅|z|,故C正确; 对于D,设z=a+bia,b∈R  ,则z+1=a+1+bi= a+1  2+b2=1, 即a+1  2+b2=1,表示以-1,0  为圆心,半径为1的圆, z-1= a-1  2+b2表示圆上的点到1,0  的距离,故z-1的最小值为 22-1=1,故D正确. 故选:CD 1 3  4 (多选)(2024上·河南南阳·高三统考期末)设复数z=- - i的共轭复数为z,则下列结论正确的 2 2 有 ( )   2π 2π z 1 A.z=cos +isin B. = 3 3 z2 2  z  C.  =1 D.z2+z2=2 z 【答案】AC 【分析】根据已知条件,结合共轭复数的概念,以及复数代数形式的乘除法运算法则,即可求解.  1 3 2π 2π 【详解】对于A,z=- + i=cos +isin ,故A正确; 2 2 3 3 z  -1 + 3i 对于B, = 2 2 z2 -1 - 3i 2 2  -1 + 3i = 2 2 =1,故B错误; 2 -1 + 3i 2 2 对于C, z  = - 2 1 + 2 3i = - 2 1 + 2 3i z -1 - 3i 2 2  2 -1 - 3i 2 2  -1 + 3i 2 2   =- 1 - 3 i,所以 z =1,故C正确; 2 2 z 1 3 对于D,z2=- - i 2 2  2 1 3  1 3 =- + i,z2=- + i 2 2 2 2  2 1 3  =- - i,所以z2+z2=-1,故D错误. 2 2 故选:AC 【题型3函数选图题新考点】 1 (2024·浙江·高三期末)已知函数对任意的x∈R有f(x)+f(-x)=0,且当x>0时,f(x)=ln(x+1),则函 数f(x)的图象大致为 ( )A. B. C. D. 【答案】D 【解析】由f(x)+f(-x)=0得f(-x)=-f(x),得到函数是奇函数,根据函数奇偶性和单调性之间的关系即 可得到结论. 【详解】由f(x)+f(-x)=0得f(-x)=-f(x),则函数是奇函数,排除A、C ∵当x>0时,f(x)=ln(x+1),∴对应的图象为D, 故选:D. 【变式训练】 5sinx 1 (2024·浙江宁波·高三期末)函数f(x)= +xcosx在[-2π,2π]上的图象大致为 ( ) e|x| A. B. C. D. 【答案】C 【分析】根据函数的奇偶性,结合特殊值,即可排除选项. 【详解】首先f(-x)=-f(x),所以函数是奇函数,故排除D,f(2π)=2π,故排除B, π 当x∈0, 2 6  时,f(x)>0,故排除A,只有C满足条件.故选:C 2 (2024·安徽省·高三模拟)函数fx 7  1 =alnx+ 的图象不可能是 ( ) x A. B. C. D. 【答案】D 【分析】分a=0,a>0和a<0三种情况讨论,结合函数的单调性及函数的零点即可得出答案. 【详解】①当a=0时,fx  1 = ,此时A选项符合; x ②当a>0时,fx  alnx+ 1, x>0 1 x =alnx+ = x aln-x    , + 1, x<0 x 当x<0时,fx  =aln-x  1 + , x 因为函数y=aln-x  1 ,y= 在-∞,0 x  上都是减函数, 所以函数fx  在在-∞,0  上是减函数, 如图,作出函数y=aln-x  1 ,y=- 在-∞,0 x  上的图象, 由图可知,函数y=aln-x  1 ,y=- 的图象在-∞,0 x  上有一个交点, 即函数fx  在在-∞,0  上有一个零点, 当x>0时,fx  1 =alnx+ ,则f x x  a 1 ax-1 = - = , x x2 x2 由f x  1 >0,得x> ,由f x a  1 <0,得00 1 x =alnx+ = x aln-x    , + 1, x<0 x 当x>0时,fx  1 =alnx+ , x 1 因为函数y=alnx,y= 在0,+∞ x  上都是减函数,所以函数fx 8  在0,+∞  上是减函数, 1 如图,作出函数y=alnx,y=- 在0,+∞ x  上的图象, 1 由图可知,函数y=alnx,y=- 的图象在0,+∞ x  上有一个交点, 即函数fx  在在0,+∞  上有一个零点, 当x<0时,fx  =aln-x  1 + ,则f x x  a 1 ax-1 = - = , x x2 x2 由f x  1 >0,得x< ,由f x a  1 <0,得 0,y>0得x>1, 所以fx  x2 = x>1 x-1  ,排除AB, 由fx  x2 1 = =x-1+ +2≥2+2=4,当且仅当x=2时取等号,可排除D. x-1 x-1 故选:C. 4 (2023上·湖北·高三校联考阶段练习)已知函数fx  的定义域为-∞,0  ∪0,+∞  ,满足fx  = fx  .当x<0时fx  1 = -x x  lnx2,则fx  的大致图象为 ( )A. B. C. D. 【答案】D 【分析】利用函数的奇偶性,及特殊位置结合排除法即可判定选项. 【详解】因为函数fx 9  的定义域为-∞,0  ∪0,+∞  ,满足fx  =fx  , 所以fx  是偶函数,所以fx  的图象关于y轴对称,故排除A; 1 当-10,故排除B,C. 故选:D 【题型4比较大小新考点】 1 1 (2024·辽宁重点高中·模拟预测)设a=cos0.1,b=10sin0.1,c= ,则 ( ) 10tan0.1 A.aa,c>a,再构造函数,比较出c< < 0,b=10sin0.1>0,c= >0, 10tan0.1 b a =10tan0.1, =10tan0.1⋅cos0.1=10sin0.1, a c π 下证θ∈0, 2  时,tanθ>θ>sinθ, π 设∠AOB=θ∈0, 2  ,射线OB与单位圆O相交于点C,过点C作CD⊥x轴于点D, 单位圆与x轴正半轴交于点A,过点A作AB⊥x轴,交射线OB于点B,连接AC, 则CD=sinθ,AB=tanθ, 设扇形AOC的面积为S,因为S 0.1>sin0.1,所以 =10tan0.1>10×0.1=1, =10sin0.1< a c 10×0.1=1, 所以b>a,c>a, 因为b=10sin0.1,令fx  x3 π =sinx-x+ ,x∈0, 6 2  , 则f x  x2 =cosx-1+ ,其中f 0 2  =0,令gx 10  =f x  ,则g x  =-sinx+x,g 0  =0, 令hx  =g x  ,则h x  π =-cosx+1>0在x∈0, 2  上恒成立, 则hx  =g x  π 在x∈0, 2  上单调递增,又g 0  =0, 故hx  =g x  π =-sinx+x>0在x∈0, 2  上恒成立, 所以gx  =f x  x2 π =cosx-1+ 在x∈0, 2 2  上单调递增,又f 0  =0, 故gx  =f x  x2 π =cosx-1+ >0在x∈0, 2 2  上恒成立, 所以fx  x3 π =sinx-x+ 在x∈0, 6 2  上单调递增,又f0  =0, 0.13 0.13 1 1 599 所以sin0.1-0.1+ >0,即sin0.1>0.1- = - = , 6 6 10 6000 6000 599 则b=10sin0.1> 600 1 cos0.1 因为c= = , 10tan0.1 10sin0.1 令qx  x2 x4 π =cosx-1+ - ,x∈0, 2 24 2  , 则q x  x3 =-sinx+x- ,令wx 6  =q x  x3 =-sinx+x- , 6 则w x  x2 =-cosx+1- ,令ex 2  =w x  x2 =-cosx+1- , 2 则e x  =sinx-x,令rx  =e x  =sinx-x, 则r x  π =cosx-1<0在x∈0, 2  上恒成立, 所以rx  =e x  π =sinx-x在x∈0, 2  单调递减, 又r0  =0,故rx  =e x  π =sinx-x<0在x∈0, 2  上恒成立, 所以ex  =w x  x2 π =-cosx+1- 在x∈0, 2 2  上单调递减, 又e0  =0,故ex  =w x  x2 π =-cosx+1- <0在x∈0, 2 2  上恒成立, 所以wx  =q x  x3 π =-sinx+x- 在x∈0, 6 2  上单调递减, 又w0  =0,故wx  =q x  x3 π =-sinx+x- <0在x∈0, 6 2  上恒成立, 故qx  x2 x4 π =cosx-1+ - 在x∈0, 2 24 2  上单调递减, 又q0  =0,故q0.1  0.01 0.0001 238801 <0,即cos0.1<1- + = , 2 24 240000 238801 故c= 1 = cos0.1 < 240000 = 238801 × 600 = 238801 , 10tan0.1 10sin0.1 599 240000 599 239600 600 238801 599 其中c< < sinx和x>lnx+1  以及lnx+1  x > ,再进行合理赋值即可. x+1 1 1 【详解】b=lnsin +cos 8 8  2 1 =ln1+sin 4  1 ,c=1+ 4  1 ln1+ 4  , 设hx  =x-sinx,x∈0,+∞  ,则h x  =1-cosx≥0, 则hx  在0,+∞  上单调递增,则hx  >h0  =0,则x>sinx在0,+∞  1 1 上恒成立,则 >sin ,即a> 4 4 1 sin , 4 设gx  =x-lnx+1  ,x∈0,+∞  ,则g x  1 x =1- = >0在0,+∞ x+1 x+1  上恒成立, 则gx  >g0  =0,则x>lnx+1  在0,+∞  上恒成立, 1 1 令x=sin ,则ln1+sin 4 4  1 1 b, 4 4 设fx  =lnx+1  x - ,f x x+1  1 1 x = - = >0在0,1 x+1 (x+1)2 (x+1)2  上恒成立, 则fx  在0,1  上单调递增,则fx  >f0  =0,即lnx+1  x > 在0,1 x+1  上恒成立, 1 5 1 5 5 1 令x= ,则ln > ,则 ln > ,即c>a,故c>a>b, 4 4 5 4 4 4 故选:B. 1 1 1 3 2 (2024·吉林·高三期末)已知a=sin ,b= cos ,c=ln ,则 ( ) 3 3 3 2 A.c0,所以f(x)在0, 2  上单调递增, 1 所以f(x)>f(0)=0,则f 3  1 1 1 =sin - cos >0, 3 3 3 1 1 1 即sin > cos ,则a>b, 3 3 3 1 x-1 设g(x)=lnx+ ,则g(x)= ,x>0, x x2则当x∈0,1 12  ,g(x)<0,所以g(x)为减函数, 则当x∈1,+∞  ,g(x)>0,所以g(x)为增函数, 3 所以g 2  3 2 3 1 =ln + >g(1)=1,则ln > ; 2 3 2 3 π 设h(x)=x-sinx,x∈0, 2  ,则h(x)=1-cosx>0, π 所以h(x)在0, 2  1 为增函数,则h 3  1 1 = -sin >h(0)=0, 3 3 1 1 3 1 即 >sin ,则ln >sin ,所以c>a; 3 3 2 3 所以c>a>b. 故选:D. 【点睛】思路点睛:两个常用不等式 π (1)x>sinx,x∈0, 2  π (2)sinx>xcosx,x∈0, 2  π 9π 3 (2024·全国·模拟预测)已知a=e10,b=1+sin ,c=1.16,则a,b,c的大小关系为 ( ) 10 A.a>b>c B.a>c>b C.c>a>b D.c>b>a 【答案】C 【分析】先利用常见不等式放缩得到a,b的大小关系,再利用幂函数的单调性比较a,c的大小关系即可得到 答案. 【详解】令fx  =ex-x-1x≥0  ,则f x  =ex-1≥0恒成立, 所以fx  在0,+∞  单调递增, 所以当x>0时,fx  >f0  =0,即ex>x+1x>0  ; 令gx  =x-sinxx≥0  ,则g x  =1-cosx≥0恒成立, 所以gx  在0,+∞  单调递增, 所以当x>0时,gx  >g0  =0,即sinx0); 9π π 由诱导公式得b=1+sin =1+sin , 10 10 π π π 所以b=1+sin <1+ b; 10 10 π 4 因为a=e101+C1×(0.1)1+C2×(0.1)2>3>e, 15 15 所以c>a. 综上,c>a>b. 故选:C 【点睛】方法点睛:本题考查比较大小问题,此类问题常见的处理方法为: (1)中间值法:通过与特殊的中间值比较大小,进而判断两个数的大小关系; (2)构造函数法:通过观察两个数形式的相似之处,构造函数,利用导数研究函数单调性与极值等性质进而比 较大小; (3)放缩法:利用常见的不等式进行数的放缩进而快速比较大小. 1 4 (2023·山东临沂·统考一模)已知x= 2  x ,log y= x,x=log z,则 ( ) 1 x 2A.x0, f 2  1 <0,则x∈ ,1 2  时fx  1 =0,即x= 2  x 1 ,而log y= x⇒y= 1 2 2  x , ∵x< x, 1 ∴x-y= 2  x 1 - 2  x >0⇒x>y. 1 x=log z⇒z=xx> x 2  x =x. 综上:y3.1415927,即a 为强率; 2 1 3 3 1+3 4 3 3 13 3+13 16 由 <π< 可得,a = = >3.1415927,即a 为强率; 1 4 4 1+4 5 4 3 16 3+16 19 由 <π< 可得,a = = >3.1415927,即a 为强率; 1 5 5 1+5 6 5 3 19 3+19 22 由 <π< 可得,a = = >3.1415927,即a 为强率; 1 6 6 1+6 7 6 3 22 3+22 25 由 <π< 可得,a = = =3.125<3.1415926,即a 为弱率,所以m=7, 1 7 7 1+7 8 7 故选:B. 【变式训练】 1 (2023·山东烟台·统考二模)给定数列A,定义A上的加密算法f:当i为奇数时,将A中各奇数项的值 i 均增加i,各偶数项的值均减去1;当i为偶数时,将A中各偶数项的值均增加2i,各奇数项的值均减去2,并记 新得到的数列为f(A)i∈N* i  .设数列B 0 :2,0,2,3,5,7,数列B n =f nB n-1  ,n∈N*  ,则数列B 为 2 ;数列B 的所有项的和为 . 2n 【答案】 1,3,1,6,4,10 9n2-3n+19【分析】由题意求出数列B ,即可求解数列B ;对于偶数项可得B -B =4n-1,为等差数列,写出第2,4, 1 2 2n 2n-2 6项. 对于奇数项可得B -B =2n-3,为等差数列,写出第1,3,5项,相加即可求解. 2n 2n-2 【详解】由题意, B=f(B ),1为奇数,所以B:3,-1,3,2,6,6, 1 1 0 1 B =f (B),2为偶数,所以B :1,3,1,6,4,10. 2 2 1 2 因为B =f (B )=f (f (B )),2n为偶数,2n-1为奇数, 2n 2n 2n-1 2n 2n-1 2n-2 所以对于偶数项,B -B =-1,B -B =4n,得B -B =4n-1, 2n-1 2n-2 2n 2n-1 2n 2n-2 则{B -B }为等差数列,得数列B2n中: 2n 2n-2 [3+(4n-1)]n 第2项为:0+(3+7+⋯+4n-3+4n-1)= =(2n+1)n, 2 第4项为:3+(3+7+⋯+4n-3+4n-1)=(2n+1)n+3, 第6项为:7+(3+7+⋯+4n-3+4n-1)=(2n+1)n+7; 对于奇数项,B -B =2n-1,B -B =-2,得B -B =2n-3, 2n-1 2n-2 2n 2n-1 2n 2n-2 则{B -B }为等差数列,得数列B2n中: 2n 2n-2 [-1+(2n-3)]n 第1项为:2+(-1+⋯+2n-5+2n-3)=2+ =(n-2)n+2, 2 [-1+(2n-3)]n 第3项为:2+(-1+⋯+2n-5+2n-3)=2+ =(n-2)n+2, 2 第5项为:5+(-1+⋯+2n-5+2n-3)=(n-2)n+5, 所以B 所有的项的和为 2n (2n+1)n+(2n+1)n+3+(2n+1)n+7+n(n-2)+2+n(n-2)+2+n(n-2)+5=9n2-3n+19. 故答案为:1,3,1,6,4,10;9n2-3n+19. 【点睛】关键点点睛:本题解决的关键是理解新定义“数列A”的算法,以学习过的数列相关的知识为基础,通 过一类问题共同特征的“数学抽象”,引出新的概念,然后在快速理解的基础上,解决新问题. 2 (2024江西省九师联盟)在1,3中间插入二者的乘积,得到1,3,3,称数列1,3,3为数列1,3的第一次 扩展数列,数列1,3,3,9,3为数列1,3的第二次扩展数列,重复上述规则,可得1,x ,x ,⋯,x ,3为数 1 2 2n-1 列1,3的第n次扩展数列,令a n =log 3 1×x 1 ×x 2 ×⋯×x 2n-1 ×3 14  ,则数列a n  的通项公式为 . 3n+1 【答案】a = n 2 【分析】根据数列的定义找到a 与a 的关系,然后利用构造法结合等比数列的定义求解即可. n+1 n 【详解】因为a n =log 3 1×x 1 ×x 2 ×⋯×x 2n-1 ×3  , 所以a n+1 =log 3 1⋅1⋅x 1  x 1x 1 x 2  x 2 ⋯x 2n-1 x 2n-1 ⋅3   ⋅3  = log 3 12⋅x3 1 x3 2 ⋯x3 2n-2 x3 2n-1 ⋅32  =3a -1, n 1 1 所以a - =3a - n+1 2 n 2  , 又a 1 =log 31×3×3  1 3 =2,所以a- = , 1 2 2 1 所以a -  n 2  3 是以 为首项,3为公比的等比数列, 2 1 3 3n 3n+1 所以a - = ×3n-1= ,所以a = . n 2 2 2 n 2 3n+1 故答案为:a = n 2 1 3 (2023上·广东深圳·)若系列椭圆C :a x2+y2=1(0m>1,则 ( ) A3 A.C3=C5 B.C3= 7 C.mCm=(n-1)Cm-1 D.Am+mAm-1=Am 8 8 7 4! n n-1 n n n+1 【答案】AD 【分析】根据组合数和排列数的计算公式和性质,对每个选项逐一计算即可判断. 【详解】对A:由组合数性质:Cm=Cn-m可知,A正确; n n A3 对B:C3= 7 ,故B错误; 7 3! n! 对C:mCm =m× n m!n-m 18  n! = ! (m-1)!n-m  n-1 =n× !  ! m-1  !n-m  , ! (n-1)C n m - - 1 1 =n-1  n-1 ×  ! m-1  !n-m  ,故mCm≠(n-1)Cm-1,C错误; n n-1 ! n! 对D:Am+mAm-1 = n n n-m  n! +m× ! n-m+1  =n-m+1 !  n! × n-m+1  n! +m× ! n-m+1  ! n+1 =  ! n-m+1  = Am ,故D正确. n+1 ! 故选:AD. 【题型7 圆锥曲线小题新考点】 1 (2023上·上海浦东新·高三华师大二附中校考阶段练习)已知圆锥曲线Γ:fx,y  =1关于坐标原点O对 称,定点P的坐标为x 0 ,y 0  .给出两个命题:①若00  ,M是抛物线C上的动 1 点,焦点F ,0 2  ,N4,2  ,下列说法正确的是 ( ) A.C的方程为y2=x B.C的方程为y2=2x 5 9 C. MF+MN的最小值为 D. MF+MN的最小值为 2 2【答案】BD 【分析】由焦点易得抛物线的方程为y2=2x,设准线为l,过M作MA⊥l交l于点A,过N作NB⊥l交l于点 9 B,交C于点M,连接MF,通过抛物线的定义结合图象可得|MF|+|MN|≥MF+MN= ,即可求得 2 答案. p 1 【详解】由题可得 = ,p=1,即C的方程为y2=2x, 2 2 设准线为l,过M作MA⊥l交l于点A,过N作NB⊥l交l于点B,交C于点M,连接MF, 将y=2代入y2=2x可得M(2,2), 1 所以MF+MN= (2-0)2+2- 2 20  2 9 +2= , 2 9 于是|MF|+|MN|=|MA| +|MN|≥|BN|=BM +MN=MF+MN= , 2 9 当M与M重合时,|MF|+|MN|取得最小值 . 2 故选:BD. 3 (2024江西九师联盟)阿波罗尼斯(约公元前262年~约公元前190年),古希腊著名数学家,主要著作 有《圆锥曲线论》、《论切触》等,尤其《圆锥曲线论》是一部经典巨著,代表了希腊几何的最高水平,此书集前人 之大成,进一步提出了许多新的性质,其中也包括圆锥曲线的光学性质,光线从双曲线的一个焦点发出,通过 x2 y2 双曲线的反射,反射光线的反向延长线经过其另一个焦点,已知双曲线C: - =1a>0,b>0的左、右 a2 b2 焦点分别为F,F,其离心率为e= 5,从F 发出的光线经过双曲线C的右支上一点E的反射,反射光线为 1 2 2 EP,若反射光线与入射光线垂直,则sin∠FFE= 2 1 5 5 4 2 5 A. B. C. D. 6 5 5 5 【答案】B c 【详解】设EF 1=m,|EF 2=n,F 1 F 2 |=2c,由题意可知 m-n=2a,EF 2 ⊥EP, a = 5, 所以m2+n2-2mn= 4a2, c= 5a, m2+n2=4c2,所以mn=2c2-2a2=8a2,又m-n=2a,所以n2+2an-8a2=0, |EF| 2a 5 解得n=2a,所以sin∠FFE= 2 = = 2 1 |FF| 2 5a 5 1 2 4 (2024·浙江宁波·高三期末)(多选)已知O为坐标原点,曲线Γ:x2+y2  2=ay3x2-y2  ,a>0, Px 0 ,y 0  为曲线Γ上动点,则 ( ) A.曲线Γ关于y轴对称 B.曲线Γ的图象具有3条对称轴 C.y ∈ -a, 9 a 0  16  D. OP的最大值为 3a 【答案】ABC 【分析】对于选项A:将x用-x替换代入方程计算,即可判断;对于选项B:令x=rcosθ,y=rsinθ,代入整理 可得r=asin3θ,利用周期性与对称性即可判断;对于选项C:代入,借助三角恒等变换公式化简计算即可;对 于选项D:借助三角函数的性质并表示出OP=r=asin3θ≤a. 【详解】对于选项A:将x用-x替换代入方程,方程不变,故曲线关于y轴对称,A正确; 对于选项B:由sin3θ=sin2θ+θ  =sin2θcosθ+cos2θsinθ =2sinθ1-sin2θ  +1-2sin2θ  sinθ=3sinθ-4sin3θ=sinθ3cos2θ-sin2θ  , 令x=rcosθ,y=rsinθ, 代入整理可得r=asinθ3cos2θ-sin2θ  =asin3θ,其中r= x2+y2>0,θ为点x,y 21  所在终边对应的角度,且θ∈0,2π  , 因为r>0,故θ∈ 0, π  3  ∪  2π ,π  3  ∪  4π , 5π  3 3  , 因为曲线关于y轴对称, 故θ∈  4π , 5π  3 3  3π 对应的图象关于θ= 轴(即y轴对称)对称, 2 2π 注意到r=asin3θ关于θ的周期为 , 3 π 5π x 故曲线也关于θ= 和θ= (即y=± )对称, 6 6 3 故B选项正确; a 对于选项C:y 0 =asin3θsinθ= 4 sin2θ3-4sin2θ  ∈ -a, 9 a  16  ,C正确; 对于选项D:OP=r=asin3θ≤a,D错误; 故选:ABC. C另解:x2+y2  2=ay3x2-y2  ⇔x4+2y2-3ay  x2+y4+ay3=0, 该方程关于x2有解,令t=x2≥0,则t2+2y2-3ay  t+y4+ay3=0在0,+∞  上有根, 由mt  =t2+2y2-3ay  t+y4+ay3, 则m0  m0 =y4+ay3≤0,或  >0 Δ=2y2-3ay  2-4y4+ay3    ≥0,   - 2y2-3ay >0 2 解得;y∈-a,0  9 或y∈0, a 16  综上:y ∈ -a, 9 a 0  16  . D另解: x2+y2  a 2= 8y2 3x2-y2 8  a 8y2+23x2-y2 2≤ 8  2     3  3 =ax2+y2  3 2, 解得OP= x2+y2≤a. 【点睛】关键点点睛:解题的关键在于将曲线Γ进行换元,令x=rcosθ,y=rsinθ,代入整理得r=asin3θ,借 助三角函数的相关性质探讨即可. 【题型8 导数周期与对称新考点】 1 (2024·陕西西安·统考一模)已知函数f(x)及其导函数f(x)的定义域均为R,记g(x)=f(x),若f(1-2x) 1 +4x为偶函数,g(x+2)=g(x-4),且g- 2  5 =0,则g 2  +g(4)= ( ) A.4 B.6 C.8 D.10 【答案】B 【分析】根据偶函数的性质可得f(1-2x)+4x=f(1+2x)-4x,求导得g(1+2x)+g(1-2x)=4,结合g(x) 的周期性即可求解. 【详解】因为f(1-2x)+4x为偶函数,所以f(1-2x)+4x=f(1+2x)-4x, 两边同时求导得-2f(1-2x)+4=2f(1+2x)-4,即f(1+2x)+f(1-2x)=4, 所以g(1+2x)+g(1-2x)=4,令x=0,得g(1)=2, 3 1 令x=- ,得g- 4 2  5 +g 2  1 =4,又因为g- 2  5 =0,所以g 2  =4, 由g(x+2)=g(x-4),所以g(x+6)=g(x),所以g(x)的周期为6,则g(4)=g(-2),5 而g(4)+g(-2)=4,所以g(4)=2,所以g 2 22  +g(4)=4+2=6. 故选:B 【变式训练】 1 (2023上·四川·高三校联考阶段练习)已知函数fx  及其导函数f x  的定义域均为R,且fx-1  为 奇函数,f 2-x  +f x  =-2,f -1  27 =-2,则f 2i-1 i=1  = ( ) A.-28 B.-26 C.-24 D.-22 【答案】B 【分析】根据题意利用赋值法求出f 1  、f 3  、f 5  、f 7  的值,推出函数f x  的周期,结合f 1  +f 3  +f 5  +f 7  +⋅⋅⋅+f 49  ,每四个值为一个循环,即可求得答案. 【详解】由f 2-x  +f x  =-2,令x=1,得2f 1  =-2,所以f 1  =-1, 由fx-1  为奇函数,得fx-1  =-f-x-1  ,所以f x-1  =f -x-1  , 故f x  =f -x-2  ①. 又f 2-x  +f x  =-2②, 由①和②得f 2-x  +f -x-2  =-2,即f 4-x-2  +f -x-2  =-2, 所以f x  +f x+4  =-2,③ 令x=-1,得f -1  +f 3  =-2,得f 3  =0, 令x=1,得f 1  +f 5  =-2,得f 5  =-1, 又f x+4  +f x+8  =-2④, 由③-④得f x  -f x+8  =0,即f x  =f x+8  , 所以函数f x  是以8为周期的周期函数, 故f 7  =f -1  =-2, 所以f 1  +f 3  +f 5  +f 7  =-1+0-1-2=-4, 27 所以f 2i-1 i=1  =f 1  +f 3  +f 5  +f 7  +⋅⋅⋅+f 53  =6 f 1  +f 3  +f 5  +f 7    +f 1  +f 3  +f 5  =-24-1+0-1=-26. 故选:B. 2 (2024上·浙江宁波·高三统考期末)已知函数fx  的定义域为R,且fx+y  fx  fy  =fx+y  - fx  -fy  ,f1  2024 = 3,则 fk k=1   = ( ) A.2024 B.1012 3 C. 3 D.0 【答案】D 2024 【分析】根据表达式得出规律,即可求出 fk k=1   的值. 【详解】由题意, 在fx  中,定义域为R,fx+y  fx  fy  =fx+y  -fx  -fy  , 当x=y=0时,f0  f0  f0  =f0  -f0  -f0  ,解得:f0  =0, 当y=1时,fx+1  fx  f1  =fx+1  -fx  -f1  , 即 3fx+1  fx  =fx+1  -fx  - 3 当x=0时, 3f1  f0  =f1  -f0  - 3,解得:f1  = 3,当x=1时, 3f2 23  f1  =f2  -f1  - 3,解得:f2  =- 3, 当x=2时, 3f3  f2  =f3  -f2  - 3,解得:f3  =0, ⋯⋯函数值周期性变化,周期为3, ∵2024=675×3-1, 2024 可得: fk k=1   =f1  +f2  +f3  +⋯+f2022  +f2023  +f2024  =675 f1  +f2  +f3    -f2025  =3× 3- 3+0  -f3  =0-0=0, 故选:D. 3 (2024上·山东淄博·高三统考期末)已知函数fx  ,gx  的定义域都为R,g x  为gx  的导函数,g x  的定义域也为R,且fx  +g x  =2,fx  -g 4-x  =2,若gx  为偶函数,则下列结论中一定成立的 个数为 ( ) ①f4  =2 ②g 2  =0 ③f1  =f3  ④f-1  +f-3  =4 A.1 B.2 C.3 D.4 【答案】C 【分析】由已知可得g x  关于点2,0  对称,判断②;因为gx  为偶函数,可推得g x  为奇函数,进而得出g x  的周期为4,可判断①;由已知得出f1  ,f3  ,可判断③;结合g x  的性质可判断④. 【详解】因为fx  +g x  =2,fx  -g 4-x  =2,所以g x  +g 4-x  =0, 所以g x  关于点2,0  对称,所以g 2  =0,②成立; 因为gx  为偶函数,所以g-x  =gx  ,所以-g -x  =g x  , 所以g x  为奇函数,g x  关于0,0  对称,即g 0  =0, 因为g x  +g 4-x  =0,-g -x  =g x  , 所以g 4-x  =g -x  ,所以g x  的周期为4, 因为f4  +g 4  =2,所以f4  =2-g 4  =2-g 0  =2,①成立; 因为fx  =2-g x  ,所以f1  =2-g 1  , 又fx  =2+g 4-x  ,所以f3  =2+g 1  , 因为g 1  不能确定,③不一定成立; 因为g x  周期为4, 所以f-1  +f-3  =2-g -1  +2+g 7  =4-g -1  +g -1  =4,④成立; 综上,一定成立的有3个. 故选:C. 4 (多选)(2024上·河南漯河·高三统考期末)已知函数f(x)及其导函数f'(x)的定义域均为R,若函数y 1 =f(3-2x)为奇函数,函数y= x-f(x+2)为偶函数,g(x)=f'(x),则 ( ) 3 2 1 2 2 A. g(0)= B. g(4)= C. g(0)+g(2)= D. g(4)-g(6)= 3 3 3 3 【答案】BC 【分析】由y=f3-2x  为奇函数,可知g3-x  -g3+x  =0,可得函数gx  图像关于直线x=3对称,再 1 由y= x-fx+2 3  ,可得gx+2  +g-x+2  2 = ,函数gx 3  1 图像关于点2, 3  对称,再代入特值,可判 断各选项. 【详解】由y=f3-2x  为奇函数可得f3-2x  =-f3+2x  ,即f3-x  =-f3+x  , ∴f 3-x  =f 3+x  ,即f 3-x  -f 3+x  =0,即g3-x  -g3+x  =0, 所以函数y=gx  的图像关于直线x=3对称,1 由y= x-fx+2 3 24  1 是偶函数可得y= -f x+2 3  为奇函数, 1 ∴ -f x+2 3  1 + -f -x+2 3  =0, 即gx+2  +g-x+2  2 = , 3 所以函数y=gx  1 的图像关于点2, 3  对称; 将x=0代入gx+2  +g-x+2  2 = ,得g2 3  1 = , 3 将x=1代入g3-x  -g3+x  =0,得g4  1 = ,B选项正确; 3 将x=2代入gx+2  +g-x+2  2 = 得g4 3  +g0  2 = ,得g0 3  1 = ,A选项错误; 3 g0  +g2  1 1 2 = + = ,C选项正确; 3 3 3 将x=3代入g3-x  -g3+x  =0,得g0  -g6  =0,故g6  1 = ,g4 3  -g6  1 1 = - =0,D选项错 3 3 误. 故选:BC. 【题型9 抽象函数类新考点】 1【2024九省联考第11题】已知函数 fx  1 的定义域为R,且 f 2  ≠0,若 fx+y  + fx  fy  =4xy,则 ( ) 1 A. f- 2  1 =0 B. f 2  =-2 1 C.函数fx- 2  1 是偶函数 D.函数fx+ 2  是减函数 1 【分析】对抽象函数采用赋值法,令x= 、y=0,结合题意可得f0 2  1 =-1,对A:令x= 、y=0,代入计算 2 1 1 即可得;对B、C、D:令y=- ,可得fx- 2 2  1 =-2x,即可得函数fx- 2  1 及函数fx+ 2  函数的性 1 质,代入x=1,即可得f 2  . 1 1 【详解】令x= 、y=0,则有f 2 2  1 +f 2  ×f0  1 =f 2  1+f0    =0, 1 又f 2  ≠0,故1+f0  =0,即f0  1 1 1 1 =-1,令x= 、y=- ,则有f - 2 2 2 2  1 +f 2  1 f- 2  1 =4× × 2 1 - 2  , 即f0  1 +f 2  1 f- 2  =-1,由f0  1 =-1,可得f 2  1 f- 2  1 =0,又f 2  1 ≠0,故f- 2  =0,故A正确; 1 1 令y=- ,则有fx- 2 2  +fx  1 f- 2  1 =4x×- 2  1 ,即fx- 2  1 =-2x,故函数fx- 2  是奇函数, 1 有fx+1- 2  =-2x+1  1 =-2x-2,即fx+ 2  1 =-2x-2,即函数fx+ 2  是减函数, 1 令x=1,有f 2  =-2×1=-2,故B正确、C错误、D正确.故选:ABD. 【变式训练】 22 1 (2022•新高考Ⅱ)已知函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则f(k) k=1 = ( )A.-3 B.-2 C.0 D.1 【答案】A 【分析】法一:根据题意赋值即可知函数fx 25  的一个周期为6,求出函数一个周期中的f1  ,f2  ,⋯,f6  的 值,即可解出. 【详解】[方法一]:赋值加性质 因为fx+y  +fx-y  =fx  fy  ,令x=1,y=0可得,2f1  =f1  f0  ,所以f0  =2,令x=0可得, fy  +f-y  =2fy  ,即fy  =f-y  ,所以函数fx  为偶函数,令y=1得,fx+1  +fx-1  = fx  f1  =fx  ,即有fx+2  +fx  =fx+1  ,从而可知fx+2  =-fx-1  ,fx-1  =-fx-4  ,故 fx+2  =fx-4  ,即fx  =fx+6  ,所以函数fx  的一个周期为6.因为f2  =f1  -f0  =1-2= -1,f3  =f2  -f1  =-1-1=-2,f4  =f-2  =f2  =-1,f5  =f-1  =f1  =1,f6  =f0  =2, 所以 一个周期内的f1  +f2  +⋯+f6  =0.由于22除以6余4, 22 所以 fk k=1   =f1  +f2  +f3  +f4  =1-1-2-1=-3.故选:A. [方法二]:【最优解】构造特殊函数 由fx+y  +fx-y  =fx  fy  ,联想到余弦函数和差化积公式 cosx+y  +cosx-y  =2cosxcosy,可设fx  =acosωx,则由方法一中f0  =2,f1  =1知a=2,acosω 1 π =1,解得cosω= ,取ω= , 2 3 所以fx  π =2cos x,则 3 fx+y  +fx-y  π π =2cos x+ y 3 3  π π +2cos x- y 3 3  π π =4cos xcos y=fx 3 3  fy  ,所以fx  = π 2π 2cos x符合条件,因此f(x)的周期T= =6,f0 3 π 3  =2,f1  =1,且f2  =-1,f3  =-2,f4  =-1,f5  =1,f6  =2,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0, 由于22除以6余4, 22 所以 fk k=1   =f1  +f2  +f3  +f4  =1-1-2-1=-3.故选:A. 【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法; 法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单 明了,是该题的最优解. 2 (2023•玉林三模)函数fx  对任意x,y∈R总有fx+y  =fx  +fy  ,当x<0时,fx  <0,f1  1 = ,则下列命题中正确的是 ( ) 3 A. fx  是偶函数 B. fx  是R上的减函数 C. fx  在-6,6  上的最小值为-2 D.若fx  +fx-3  ≥-1,则实数x的取值范围为3,+∞  【答案】C 【分析】利用赋值法,结合函数奇偶性的定义,即可判断A; 根据函数单调性的定义,结合条件,即可判断B; 根据函数的单调性,和奇偶性,以及条件,即可判断C; 不等式转化为f2x-3  ≥f-3  ,利用函数的单调性,即可判断D.【详解】解:取x=0,y=0,则f0 26  =f0  +f0  ,解得f0  =0,y=-x, 则f0  =fx  +f-x  .即-fx  =f-x  ,函数fx  是奇函数,所以选项A错误; 令x 1 ,x 2 ∈R,且x 1 f1  -1恒成立,则实数 a的取值范围是 . 1 1 【答案】a> 或a<- e e 【分析】利用特殊值法求f1  =1,f-1  =1,利用奇偶函数概念研究fx  的奇偶性,再利用单调性化简不等 式,参变分离、构造新函数法,再利用导数的性质进行求解即可. 【详解】令x 1 =x 2 =1,有f1  =f1  +f1  -1,得f1  =1, 令x 1 =x 2 =-1,得f1  =2f-1  -1,则f-1  =1, 令x 1 =xx∈D  ,x 2 =-1,有f-x  =fx  +f-1  -1,得f-x  =fx  , 又函数fx  的定义域D为-∞,0  ∪0,+∞  关于原点对称,所以fx  是偶函数, 因为fx  在-∞,0  上单调递减,所以fx  在0,+∞  上单调递增. 不等式fax  -flnx  >f1  -1可化为fax  >flnx  , 则有fax  >flnx  , 因为函数fx  在0,+∞  上单调递增,所以ax>lnx, lnx 又x>1,所以ax>lnx,即a> , x 设hx  lnx = x (x>1),则a>h(x) max , 因为h x  1-lnx = ,故当x∈1,e x2  时,h x  >0,hx  单调递增, 当x∈e,+∞  时,h x  <0,hx  单调递减, 所以hx  ≤he  1 1 1 1 = ,所以a> ,所以a> 或a<- . e e e e 1 1 故答案为:a> 或a<- . e e 【点睛】关键点点睛:先判断出函数的奇偶性,进而判断函数的单调性,通过构造新函数利用导数的性质进行 求解是解题的关键. 4 (2024· 江苏南通·高三模拟)(多选)已知函数fx  的定义域为R,且fx+y  fx-y  =f2 x  -f2 y  , f1  3 = 3,f2x+ 2  为偶函数,则 ( ) A. f(0)=0 B. fx  为偶函数2023 C. f(3+x)=-f(3-x) D.f(k)= 3 k=1 【答案】ACD 【分析】对于A,利用赋值法即可判断;对于B,利用赋值法与函数奇偶性的定义即可判断;对于C,利用换元 法结合fx 27  的奇偶性即可判断;对于D,先推得fx  的一个周期为6,再依次求得f1  ,f2  ,f3  ,f4  ,f5  , f6  ,从而利用fx  的周期性即可判断. 【详解】对于A,因为fx+y  fx-y  =f2 x  -f2 y  , 令x=y=0,则f0  f0  =f2 0  -f2 0  ,故f2 0  =0,则f0  =0,故A正确; 对于B,因为fx  的定义域为R,关于原点对称, 令x=0,则fy  f-y  =f2 0  -f2 y  ,又fy  不恒为0,故f-y  =-fy  , 所以fx  为奇函数,故B错误; 3 对于C,因为f2x+ 2  3 为偶函数,所以f-2x+ 2  3 =f2x+ 2  , 3 3 令-t=-2x+ ,则2x=t+ ,故f-t 2 2  =ft+3  , 3 3 令t=-2x+ ,则2x=-t+ ,故ft 2 2  =f-t+3  , 又fx  为奇函数,故f-t  =-ft  , 所以ft+3  =-f-t+3  ,即f(3+x)=-f(3-x),故C正确; 对于D,由选项C可知ft+3  =f-t  =-ft  , 所以ft+6  =-ft+3  =ft  ,故fx  的一个周期为6, 因为f1  = 3,所以f-1  =-f1  =- 3, 对于ft  =f-t+3  , 令t=2,得f2  =f1  = 3,则f-2  =- 3, 令t=3,得f3  =f0  =0,则f-3  =0, 令t=4,得f4  =f-1  =- 3, 令t=5,得f5  =f-2  =- 3, 令t=6,得f6  =f-3  =0, 所以f1  +f2  +f3  +f4  +f5  +f6  = 3+ 3+0- 3- 3+0=0, 又2023=337×6+1, 所以由fx  的周期性可得: 2023 f(k)=f(1)+f(2)+f(3)+⋯+f(2023)=f(1)= 3,故D正确. i=1 故选:ACD. 【点睛】关键点睛:本题解题的关键在于利用赋值法与函数奇偶性的定义推得fx  的奇偶性,再结合题设条 件推得fx  为周期函数,从而得解. 【题型10函数导数新考点】 1 (多选)(2022·山东菏泽·统考一模)对圆周率π的计算几乎贯穿了整个数学史.古希腊数学家阿基米德(公 22 元前287-公元前212)借助正96边形得到著名的近似值: .我国数学家祖冲之(430-501)得出近似 7 355 355 值 ,后来人们发现π- <10-6,这是一个“令人吃惊的好结果” .随着科技的发展,计算π的方法 113 113 越来越多.已知π=3.141592653589793238462643383279502⋯,定义fn  n∈N  的值为π的小数点后第 n个位置上的数字,如f1  =1,f4  =5,规定f0  =3.记f1 n  =fn  ,fk+1 n  =fk fn    k∈N*  ,集合A 为函数fk n k 28  n∈N  的值域,则以下结论正确的有 ( ) A.A=0,1,2,3,4,5,6,7,8,9 1  B.A =1,2,3,4,5,6,9 3  C.对∀k∈N*,1∈A D.对∀k∈N*,A 中至少有两个元素 k k 【答案】AC 【分析】对于A:根据定义,直接求出A=0,1,2,3,4,5,6,7,8,9 1  ,即可判断; 对于B:根据定义,直接求出f3 n  的值域为1,2,3,4,5,9  ,即可判断; 对于C:求出fk+1 1  =fk f1    =⋯=f1 f1    =f1  =1,即可判断; 对于D:求出k=10时,f9 n  的值域为1  ,即可否定结论. 【详解】对于A:由题意,集合A 为函数fk n k  n∈N  的值域,所以集合A 1 为函数f1 n  的值域. 所以由f1 n  =fn  可得:f1 1  =f1  =1,f1 6  =f6  =2,f1 9  =f9  =3,f1 2  =f2  =4,f1 4  = f4  =5,f1 7  =f7  =6,f1 13  =f13  =7,f1 11  =f11  =8,f1 5  =f5  =9,f1 32  =f32  =0,故 A=0,1,2,3,4,5,6,7,8,9 1  .故A正确. 对于B:由题意,集合A 为函数fk n k  n∈N  的值域,所以集合A 3 为函数f3 n  的值域. 规定f0  =3.记f1 n  =fn  ,fk+1 n  =fk fn    k∈N*  , 所以f3 n  =f2 fn    ,令fn  =m,m∈0,1,2,3,4,5,6,7,8,9  ,则f3 n  =f2 m  =f1 fm    , 因为f0  =3,f1  =1,f2  =4,f3  =1,f4  =5,f5  =9,f6  =2,f7  =6, f8  =5,f9  =3, 所以f2 0  =f1 f0    =f3  =1, f2 1  =f1 f1    =f1  =1, f2 2  =f1 f2    =f4  =5, f2 3  =f1 f3    =f1  =1, f2 4  =f1 f4    =f5  =9, f2 5  =f1 f5    =f9  =3, f2 6  =f1 f6    =f2  =4, f2 7  =f1 f7    =f6  =2, f2 8  =f1 f8    =f5  =9, f2 9  =f1 f9    =f3  =1,所以f3 n  的值域为1,2,3,4,5,9  .故B错误. 对于C:因为f1  =1,所以fk+1 1  =fk f1    =⋯=f1 f1    =f1  =1,所以对∀k∈N*,1∈A .故C正 k 确; 对于D: 由C的推导可知:fk+1 1  =fk f1    =⋯=f1 f1    =f1  =1. 因为f1 n  =fn  ,fk+1 n  =fk fn    k∈N*  , 所以f10 n  =f9 fn    ,令fn  =m,m∈0,1,2,3,4,5,6,7,8,9  ,则f10 n  =f9 m  =f8 fm    , 因为f0  =3,f1  =1,f2  =4,f3  =1,f4  =5,f5  =9,f6  =2,f7  =6, f8  =5,f9  =3, 所以f9 0  =f8 f0    =f8 3  =f7 f3    =f7 1  =1, f9 1  =1, f9 2  =f8 f2    =f8 4  =f7 f4    =f7 5  =f6 f5    =f6 9  =f5 f9    =f5 3  =f4 f3    =f4 1  =1, f9 3  =f8 f3    =f8 1  =1, f9 4  =f8 f4    =f8 5  =f7 f5    =f7 9  =f6 f9    =f6 3  =f5 f3    =f5 1  =1, f9 5  =f8 f5    =f8 9  =f7 f9    =f7 3  =f6 f3    =f6 1  =1,, f9 6  =f8 f6    =f8 2  =f7 f2    =f7 4  =f6 f4    =f6 5  =f5 f5    =f5 9  =f4 f9    =f4 3  =f3 f3    =f3 1  =1, f9 7  =f8 f7    =f8 6  =f7 f6    =f7 2  =f6 f2    =f6 4  =f5 f4    =f5 5  =f4 f5    =f4 9  =f3 f9    =f3 3  =f2 f3    =f2 1  =1, f9 8  =f8 f8    =f8 5  =f7 f5    =f7 9  =f6 f9    =f6 3  =f5 f3    =f5 1  =1, f9 9  =f8 f9    =f8 3  =f7 f3    =f7 1  =1即k=10时,f10 n 29  的值域为1  .故D错误. 故选:AC 【点睛】数学中的新定义题目解题策略: (1)仔细阅读,理解新定义的内涵; (2)根据新定义,对对应知识进行再迁移. 【变式训练】 1 (2024·高三·期末)(多选)在平面直角坐标系中,将函数f(x)的图象绕坐标原点逆时针旋转α (0<α≤ 90°)后,所得曲线仍然是某个函数的图象,则称f(x)为“α旋转函数”.那么 ( ) A.存在90°旋转函数 B.80°旋转函数一定是70°旋转函数 1 bx C.若g(x)=ax+ 为45°旋转函数,则a=1 D.若h(x)= 为45°旋转函数,则-e2≤b≤0 x ex 【答案】ACD 【分析】对A,举例说明即可;对B,举反例判断即可;根据函数的性质,结合“α旋转函数”的定义逐个判断即 可;对CD,将45°旋转函数转化为函数与任意斜率为1的函数最多一个交点,再联立函数与直线的方程,分析 零点个数判断即可. 【详解】对A,如y=x满足条件,故A正确; 对B,如倾斜角为20°的直线是80°旋转函数,不是70°旋转函数,故B错误; 1 1 对C,若g(x)=ax+ 为45°旋转函数,则根据函数的性质可得,g(x)=ax+ 逆时针旋转45°后,不存在 x x 1 与x轴垂直的直线,使得直线与函数有1个以上的交点.故不存在倾斜角为45°的直线与g(x)=ax+ 的函 x 数图象有两个交点.即y=x+bb∈R  1 y=ax+ 1 与g(x)=ax+ 至多1个交点.联立 x 可得a-1 x y=x+b  x2 -bx+1=0. 当a=1时,-bx+1=0最多1个解,满足题意; 当a≠1时,a-1  x2-bx+1=0的判别式Δ=b2-4a-1  ,对任意的a,都存在b使得判别式大于0,不满足 题意,故a=1.故C正确; bx 对D,同C,h(x)= 与y=x+aa∈R ex  bx 的交点个数小于等于1,即对任意的a,a= -x至多1个解, ex 故gx  bx = -x为单调函数,即g x ex  b1-x =  -1为非正或非负函数. ex 又g 1  b1-x =-1,故  -1≤0,即ex≥-bx-1 ex  恒成立. 即y=ex图象在y=-bx-1  上方,故-b≥0,即b≤0. 当y=ex与y=-bx-1  相切时,可设切点x 0 ,ex0  ,对y=ex求导有y=ex,故 ex0 =ex0,解得x =2,此时 x -1 0 0 b=-ex0=-e2,故-e2≤b≤0.故D正确.故选:ACD 2 (2024·辽宁重点高中·高三模拟)为了激发同学们学习数学的热情,某学校开展利用数学知识设计 LOGO的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO,那么该同学所选的函数最有可 能是 ( ) A. fx 30  =x-sinx B. fx  =sinx-xcosx C. fx  1 =x2- D. fx x2  =sinx+x3 【答案】B 【分析】利用导数研究各函数的单调性,结合奇偶性判断函数图象,即可得答案. 【详解】A:f(x)=1-cosx≥0,即f(x)在定义域上递增,不符合; B:f(x)=cosx-(cosx-xsinx)=xsinx, 在(-2π,-π)上f(x)<0,在(-π,π)上f(x)>0,在(π,2π)上f(x)<0, 所以f(x)在(-2π,-π)、(π,2π)上递减,(-π,π)上递增,符合; 1 1 C:由f(-x)=(-x)2- =x2- =f(x)且定义域为{x|x≠0},为偶函数, (-x)2 x2 2 所以题图不可能在y轴两侧,研究(0,+∞)上性质:f(x)=2x+ >0,故f(x)递增,不符合; x3 D:由f(-x)=sin(-x)+(-x)3=-sinx-x3=-f(x)且定义域为R,为奇函数, 研究(0,+∞)上性质:f(x)=cosx+3x2>0,故f(x)在(0,+∞)递增, 所以f(x)在R上递增,不符合; 故选:B 3 (2024·辽宁重点高中·高三模拟)如图是古筝鸣箱俯视图,鸣箱有多根弦,每根弦下有一只弦码,弦码又 叫雁柱,用于调节音高和传振.图2是根据图1绘制的古筝弦及其弦码简易直观图.在直观图中,每根弦都 垂直于x轴,左边第一根弦在y轴上,相邻两根弦间的距离为1,弦码所在的曲线(又称为雁柱曲线)方程为y =1.1x,第n(n∈N,第0根弦表示与y轴重合的弦)根弦分别与雁柱曲线和直线l:y=x+1交于点A nx n ,y n  和B nx n ,y n  20 ,则y y=( )参考数据:1.122=8.14. n n n=0 A.814 B.900 C.914 D.1000 【答案】C 【分析】根据题意,有y =1.1n,y=n+1,则有y y=(n+1)1.1n,利用错位相减法分析可得答案. n n n n 【详解】根据题意,第n根弦分别与雁柱曲线y=1.1x和直线l:y=x+1交于点A (x ,y )和B (x,y), n n n n n n 则y =1.1n,y=n+1,则有y y=(n+1)1.1n, n n n n20 设T=y y ,则T=1+2×1.1+3×1.12+4×1.13+⋯⋯+21×1.120,① n n n n n=0 则1.1T=1.1+2×1.12+3×1.13+4×1.14+⋯⋯+21×1.121,② n 1⋅121-1 ①-②可得:-0.1T=1+1.1+1.12+1.13+⋯⋯+1.120-21×1.121= -21×1.121 n 1.1-1 =10×(1.121-1)-21×1.121=-10-11×1.121=-10-10×1.122=-91.4; T=914, n 20 故y y =914; n n n=0 故选:C 4 (2024· 江西省吉安市·高三模拟)(多选)定义:对于定义在区间I上的函数f(x)和正数α(0<α≤1),若 存在正数M,使得不等式 fx 1 31  -fx 2   ≤Mx 1 -x 2 α对任意x 1 ,x 2 ∈I恒成立,则称函数f(x)在区间I上满足 α阶李普希兹条件,则下列说法正确的有 ( ) 1 A.函数f(x)= x在[1,+∞)上满足 阶李普希兹条件 2 B.若函数f(x)=xlnx在[1,e]上满足一阶李普希兹条件,则M的最小值为e C.若函数f(x)在[a,b]上满足M=k(0x 2 ,∴ fx 1  -fx 2   = x 1 - x 2 ,即∴ fx 1  -fx 2    x 1 -x 2  x - x = 1 2 1 2 x 1 -x 2  = 1 2 x - x x 1 + x 2 <1,故∃M≥1,对∀x 1 ,x 2 ∈1,+∞ 1 2  ,均有 fx 1  -fx 2   ≤Mx 1 -x 2  1 2,A选项正确; B选项:不妨设x 1 >x 2 ,∵fx  =xlnx在1,e  单调递增,∴ fx 1  -fx 2   =fx 1  -fx 2  ,∴ fx 1  -fx 2    ≤Mx 1 -x 2,即fx 1  -fx 2  ≤Mx 1 -x 2  ,即fx 1  -Mx 1 ≤fx 2  -Mx 2 对∀x 1 >x 2 ,x 1 ,x 2 ∈1,e  恒成立, 即fx  -Mx在1,e  上单调递减,∴f x  -M≤0对∀x∈1,e  恒成立,所以M≥1+lnx对∀x∈1,e  恒成立,即M≥2,即M的最小值为2,B选项错误; C选项:假设方程fx  =x在区间a,b  上有两个解x 0 ,t,则 fx 0  -ft   ≤kx 0 -t<x 0 -t,这与 fx 0  -ft   =x 0 -t矛盾,故只有唯一解,C选项正确; 1 D选项:不妨设x 1 >x 2 ,当x 1 -x 2 ≤ 2 时,fx 1  -fx 2  1 1  ≤x 1 -x 2≤ 2 ,当x 1 -x 2 > 2 时,fx 1  -fx 2   = fx 1  -f1  +f0  -fx 2   ≤ fx 1  -f1   + fx 2  -f0    ≤1-x 1 +x 2 -0=1-x 1 -x 2  1 < 2 ,故对∀x 1 ,x 2 ∈0,1  ,fx 1  -fx 2  1  ≤ ,故D选项正确; 2 故选:ACD 【题型11不等式新考点】 1 (2020下·浙江温州·高三温州中学校考阶段练习)已知正实数x,y,z>0,则A=maxx, 1  y  2 +maxy,  x  的最小值为 ;B=maxx, 1  y  2 +maxy,  z  3 +maxz,  x  的最小值为 .【答案】 2 2 2 5 【解析】分类讨论,结合均值不等式,注意取等验证是否满足即可. 1 2 2 【详解】(1)若x≥ , ≥y时,即1≤xy≤2时,A=x+ ≥2 2,当x= 2,y=1时可取等号, y x x 1 2 若x> ,y> 时,即xy>2时,A=x+y≥2 xy>2 2, y x 1 2 2 若 >x, >y时,即02, y x xy 1 2 2 所以A= + ≥2 >2 2, y x xy 综上可知A的最小值为2 2; 3 2 5 3 5 2 5 (2)当z≥ 时,B≥x+ +z≥ +z≥2 5,当z= 5,x= ,y= 时可取等号; x z z 5 5 3 3 2 3 2x 5x 3 3 5 2 5 当z≤ 时,B≥x+ + ≥x+ + = + ≥2 5,当z= 5,x= ,y= 时可取等号; x x z x 3 3 x 5 5 3 5 2 5 综上所述,B≥2 5,z= 5,x= ,y= 时可取等号; 5 5 故答案为:2 2,2 5. 【点睛】本题考查代数式的最值求法,考涉及均值不等式及分类讨论思想,属于中档题. 【变式训练】 1 【2024九省联考】以max M表示数集M中最大的数.设00,A≥c-b>0,A≥1-c>0. b 又b≥2a,或a+b≤1,∴a≤ ,或a≤1-b. 2 b 2 b b b b 1 1 ①当 ≥1-b,即 ≤b<1时,a≤ ,A≥b-a≥b- = .A≥ ≥ ,A≥ . 2 3 2 2 2 2 3 3 b 2 ②当 <1-b,即0 ,y>3,不等式k2x-3 2  y-3  ≤8x3+y3-12x2 -3y2恒成立,则实数k的最大值为 ( ) A.12 B.24 C.2 3 D.4 3 【答案】B 4x2 y2 4x2 y2 【分析】令a=2x-3>0,b=y-3>0,不等式变形为 + ≥k,求出 + 的最小值, y-3 2x-3 y-3 2x-3 从而得到实数k的最大值. 3 【详解】x> ,y>3,变形为2x-3>0,y-3>0, 2 令a=2x-3>0,b=y-3>0, 则k2x-3  y-3  ≤8x3+y3-12x2-3y2转化为 8x3+y3-12x2-3y2 k≤ 2x-3  y-3  4x2 y2 ,即 + ≥k, y-3 2x-3 4x2 y2 a+3 其中 + = y-3 2x-3  2 b+3 + b  2 2 3a ≥ a  2 2 3b + b  2 a a b =12 + b a  a b ≥24 ⋅ =24 b a a=3,  当且仅当 b=3 ,即x=3,y=6时取等号,可知k≤24.   b = a a b 故选:B 【点睛】思路点睛:不等式恒成立问题,先分离参数后,然后利用基本不等式求最值. 利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数; (2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的 因式的和转化成定值; (3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求 的最值,这也是最容易发生错误的地方. 1 2 4 3 (2018·河南·高三竞赛)已知a、b、c均为正数,则min , , ,3abc  a b c  的最大值为 .【答案】 2 1 2 4 【详解】记M=min , , ,3abc  a b c 34  1 2 4 ,那么M≤ ,M≤ ,M≤ , a b c 8 2 于是M3≤ ,得 3abc≤ . ① abc M 又 M≤ 3abc. ② 2 由①②可得M≤ ,所以M≤ 2,即M = 2,当且仅当c=2b=4a=2 2时取得. M max 4 (2018·全国·高三竞赛)设非负实数x、y、z满足x+y+z=1.则t= 9+x2+ 4+y2+ 1+z2的最 小值为 . 【答案】 37 【详解】首先, 4+y2+ 1+z2≥ 9+y+z  2. 则t≥ 9+x2+ 9+y+z  1 2≥2 9+ = 37. 4 1 1 1 当且仅当z= y= x= 时,t = 37. 2 3 6 min 5 (2023·全国·高三专题练习)设fx,y,z  x2y-z =  y2z-x + 1+x+3y  z2x-y + 1+y+3z  ,其中x、y、z≥0 , 1+z+3x 且x+y+z=1.求fx,y,z  的最大值和最小值. 1 【答案】最大值为 ,最小值为0 7 【分析】方法一:利用对称轮换式,要求fx,y,z  的最大值和最小值,本题可转化为证明0≤fx,y,z  1 ≤ ,利 7 用柯西不等式即可证得结论成立,从而可得出fx,y,z  的最大值和最小值. 【详解】[方法一]: 先证fx,y,z  1 1 ≤ ,当且仅当x=y=z= 时等号成立. 7 3 fx,y,z  xx+3y-1 =∑  x =1-2∑ 1+x+3y 1+x+3y x ∑x 由柯西不等式:∑ ≥ 1+x+3y  2 ∑x1+x+3y  1 = ∑x1+x+3y  , 因为∑x1+x+3y  =∑x2x+4y+z  7 =2+∑xy≤ , 3 x 3 从而∑ ≥ ,所以,fx,y,z 1+x+3y 7  3 1 ≤1-2× = , 7 7 1 当且仅当x=y=z= 时等号成立. 3 再证fx,y,z  x=1 ≥0当  时等号成立. y=z=0 事实上,fx,y,z  x2y-z =  y2z-x + 1+x+3y  z2x-y + 1+y+3z  1+z+3x 2 1 =xy - 1+x+3y 1+y+3z  2 1 +xz - 1+z+3x 1+x+3y  2 1 +yz - 1+y+3z 1+z+3x  7xyz = 1+x+3y  1+y+3z  7xyz + 1+z+3x  1+x+3y  7xyz + 1+y+3z  1+z+3x  ≥0, 故fx,y,z  x=1 ≥0,当且仅当  时等号成立. y=z=0 [方法二]: 先证fx,y,z  1 1 ≤ ,当且仅当x=y=z= 时等号成立. 7 3fx,y,z 35  xx+3y-1 =∑  x =1-2∑ 1+x+3y 1+x+3y x ∑x 由柯西不等式:∑ ≥ 1+x+3y  2 ∑x1+x+3y  1 = ∑x1+x+3y  , 因为∑x1+x+3y  =∑x2x+4y+z  7 =2+∑xy≤ , 3 x 3 从而∑ ≥ ,所以,fx,y,z 1+x+3y 7  3 1 ≤1-2× = , 7 7 1 当且仅当x=y=z= 时等号成立. 3 本不等式是轮换对称的,可设z=minx,y,z  ,若z=0,则 2xy xy 2xy xy f(x,y,0)= - = - =0. 1+x+3y 1+y 2x+4y x+2y x 1 下设x,y≥z>0,由(*)式,要证f≥0,只要证∑ ≤ ⋯(1) 1+x+3y 2 1 x y 注意到 = + ,于是(1)等价于 2 2x+4y x+2y z ≤ x - x 1+z+3x 2x+4y 1+x+3y  y y + - x+2y 1+y+3z  = z  x + 8y 2x+4y 1+x+3y 1+y+3z  2x+4y x 8y 即 ≤ + ⋯(2) 1+z+3x 1+x+3y 1+y+3z 而由Cauchy不等式,可得 x + 8y = x2 + (2y)2 1+x+3y 1+y+3z x(1+x+3y) y(1+y+3z) 2 (x+2y)2 ≥ x+x2+3xy+ y+y2+3yz 2 2x+4y = 1+z+3x 即(2)成立,从而f≥0,故f =0,当x=1,y=z=0时等号成立. min 【点睛】关键点点睛:本题考查三元函数最值的求解,解本题的关键在于灵活使用柯西不等式,注意到代数式 的对称性,利用轮换结合柯西不等式证明出0≤fx,y,z  1 ≤ ,同时要注意等号成立的条件. 7 【题型12立体几何小题新考点】 1 (2024·浙江省温州·高三)(多选)“牟合方盖”是由我国古代数学家刘徽首先发现并采用的一种用于计算球 体体积的方法,当一个正方体用圆柱从纵横两侧面作内切圆柱体时,两圆柱体的公共部分即为“牟合方盖”, 他提出“牟合方盖”的内切球的体积与“牟合方盖”的体积比为定值.南北朝时期祖暅提出理论:“缘幂势既 同,则积不容异”,即“在等高处的截面面积总是相等的几何体,它们的体积也相等”,并算出了“牟合方盖”和 球的体积.其大体思想可用如图表示,其中图1为棱长为2r的正方体截得的“牟合方盖”的八分之一,图2 为棱长为2r的正方体的八分之一,图3是以底面边长为r的正方体的一个底面和底面以外的一个顶点作的 四棱锥,则根据祖暅原理,下列结论正确的是:( )A.若以一个平行于正方体上下底面的平面,截“牟合方盖”,截面是一个圆形 B.图2中阴影部分的面积为h2 C.“牟合方盖”的内切球的体积与“牟合方盖”的体积比为π:4 16 D.由棱长为2r的正方体截得的“牟合方盖”体积为 r3 3 【答案】BCD 【分析】根据“牟盒方盖”的定义、祖暅原理及几何体的体积公式计算可得. 【详解】由于牟盒方盖可以由两个直径相等且相互垂直的圆柱体相交得到的, 故只要用水平面去截它们,那么所得的截面为正方形,故A错误; 根据祖暅原理,图2中正方体与“牟合方盖”的八分之一之间空隙的截面面积与图3中正四棱锥中阴影部分 的面积相等,故B正确; 由于牟盒方盖可以由两个直径相等且相互垂直的圆柱体相交得到的,存在内切球,且只要用水平面去截它 们, 那么所得的正方形和圆,也是相切在一起的,对于直径为2r的球和高为2r的牟合方盖来说, 使用同一高度处的水平面来截它们,所得的截面积之比正好总是相切的圆和正方形的面积之比,也就是π: 4,故C正确; 由图中正方体与牟合方盖的八分之一之间空隙的体积与正四棱锥体的体积相等; 1 而正四棱锥体的体积为V = r3. 倒棱锥 3 1 2 所以八分之一牟合方盖的体积等于正方体的体积减去正四棱锥的体积V =r3- r3= r3, 1牟盒方盖 3 3 8 2 16 从而得到整个牟合方盖的体积为8× r3= r3,故D正确 3 3 故选:BCD. 【变式训练】 1 (2024·高三期末)如图,将正四棱台切割成九个部分,其中一个部分为长方体,四个部分为直三棱柱,四 个部分为四棱锥.已知每个直三棱柱的体积为3,每个四棱锥的体积为1,则该正四棱台的体积为 ( ) 36A.36 B.32 C.28 D.24 【答案】C 【分析】设每个直三棱柱高为a,每个四棱锥的底面都是正方形,设每个四棱锥的底面边长为b,设正四棱台的  1abh=3 高为h,可得出 2 ,求出a2h的值,即可求得该正四棱台的体积. 1b2h=1 3 【详解】设每个直三棱柱高为a,每个四棱锥的底面都是正方形,设每个四棱锥的底面边长为b, 设正四棱台的高为h,因为每个直三棱柱的体积为3,每个四棱锥的体积为1,  1abh=3 则 2 ,可得a2b2h2=a2h⋅b2h=a2h×3=36,可得a2h=12, 1b2h=1 3 所以,该正四棱台的体积为V=a2h+4×3+4×1=12+16=28. 故选:C. 2 (2024·高三期末)已知直线BC垂直单位圆O所在的平面,且直线BC交单位圆于点A,AB=BC= 1,P为单位圆上除A外的任意一点,l为过点P的单位圆O的切线,则 ( ) A.有且仅有一点P使二面角B-l-C取得最小值 B.有且仅有两点P使二面角B-l-C取得最小值 C.有且仅有一点P使二面角B-l-C取得最大值 D.有且仅有两点P使二面角B-l-C取得最大值 【答案】D 【分析】先作出二面角的平面角,表示出二面角的正切值,再构造辅助函数,最后用导数求最值方法判断. 【详解】过A作AM⊥l于M,连接MB、MC,如图所示, 因为直线BC垂直单位圆O所在的平面,直线l在平面内,且直线BC交单位圆于点A, 所以AC⊥l,AM,AC⊂平面AMC,AM∩AC=A,所以l⊥平面AMC, MC,MB⊂平面AMC,所以l⊥MC,l⊥MB, 所以∠BMC是二面角B-l-C的平面角, 设∠BMC=θ,∠AMC=α,∠AMB=β,AM=t,则θ=α-β, 由已知得t∈0,2 37  ,AB=BC=1, 2 1 tanα= ,tanβ= ,tanθ=tanα-β t t  = tanα-tanβ = 2 t - 1 t = t , 1+tanα⋅tanβ 1+ 2 ⋅ 1 t2+2 t t 令ft  t = ,则f t t2+2  1⋅t2+2 =  -t2t  t2+2   2+t = 2   2-t  t2+2  , 2 当t∈0, 2  时,f t  >0,ft  单调递增,当t∈ 2,2  时,f t  <0,ft  单调递减, f2  1 = >f0 3  =0 所以t∈0,2  ,当t= 2时,ft  取最大值,没有最小值, 即当t= 2时tanθ取最大值,从而θ取最大值, 由对称性知当t= 2时,对应P点有且仅有两个点,所以有且仅有两点P使二面角B-l-C取得最大值. 故选:D. 3 (2024·辽宁重点高中·高三模拟)表面积为4π的球内切于圆锥,则该圆锥的表面积的最小值为 ( ) A.4π B.8π C.12π D.16π 【答案】B 【分析】求出圆锥内切球的半径,设圆锥顶点为A,底面圆周上一点为B,底面圆心为C,内切球球心为D,内 2πR4 切球切母线AB于E,底面半径BC=R>1,∠BDC=θ,则tanθ=R,求出S= ,再换元利用基本不等 R2-1 式求出函数的最小值得解. 【详解】设圆锥的内切球半径为r,则4πr2=4π,解得r=1, 设圆锥顶点为A,底面圆周上一点为B,底面圆心为C,内切球球心为D, 轴截面如下图示,内切球切母线AB于E,底面半径BC=R>1,∠BDC=θ,则tanθ=R, 又∠ADE=π-2θ,故AB=BE+AE=R+tan(π-2θ)=R-tan2θ, 2tanθ 2R 2R R(R2+R) 又tan2θ= = ,故AB=R- = , 1-tan2θ 1-R2 1-R2 R2-1 πR2(R2+1) 2πR4 故该圆锥的表面积为S= +πR2= , R2-1 R2-1 令t=R2-1>0,所以R2=t+1, 2π(t+1)2 1 所以S= =2π⋅t+ +2 t t 38  1 ≥2π⋅2 t⋅ +2 t  =8π. (当且仅当t=1时等号成立) 所以该圆锥的表面积的最小值为8π. 故选:B 4 (2024·辽宁重点高中·高三模拟)(多选)在空间直角坐标系中,有以下两条公认事实: (1)过点P 0x 0 ,y 0 ,z 0   ,且以u=a,b,c  abc≠0  x-x y-y 为方向向量的空间直线l的方程为 0 = 0 = a b z-z 0; c (2)过点Px 0 ,y 0 ,z 0   ,且v=m,n,t  mnt≠0  为法向量的平面α的方程为mx-x 0  +ny-y 0  + tz-z 0  =0. 现已知平面α:x+2y+3z=6,l 1 :   2 3 x y- - 2 y z = = 1 1 ,l 2 :x=y=2-z,l 3 : x- 5 1 = - y 4 = z 1 ( ) A.l⎳α B.l ⎳α C.l ⎳α D.l⊥α 1 2 3 1 【答案】CD 【分析】根据公认事实求出直线的方向向量与平面的法向量,用空间向量判断它们之间的位置关系.  【详解】平面α:x+2y+3z=6,则平面法向量为v=1,2,3  , 对l 1 :   2 3 x y- - 2 y z = = 1 1 ,则6x-3=3y=2z+1,即 x- 1 2 1 = y 1 = z+ 1 2 1 ,所以l 1 过点 2 1 ,0,- 2 1 6 3 2   ,方向向量为 u 1 1 1 1 = , , 6 3 2      ,所以v=6u ,所以v⎳u ,所以l⊥α,故A错误D正确. 1 1 1 x y z-2 对l 2 :x=y=2-z,即 1 = 1 = -1 ,所以l 2 过点0,0,2   ,方向向量为 u 2 =1,1,-1  ,点0,0,2  代入平面 方程x+2y+3z=6成立,所以l 与平面α有公共点,故B错误; 2x-1 y z 对l 3 : 5 = -4 = 1 ,所以l 3 过点1,0,0 39   ,方向向量为 u 3 =5,-4,1  ,   因为v⋅u 3 =1,2,3  ⋅5,-4,1    =5-8+3=0,所以v⊥u 3 ,所以l 3 ⊂α或l 3 ⎳α,但点1,0,0  代入平面x+ 2y+3z=6不成立,故l ⊄α,所以l ⎳α,所以C正确. 3 3 故选:CD 【题型13统计概率小题新考点】 1 (2024·浙江省温州)在研究急刹车的停车距离问题时,通常假定停车距离等于反应距离(d ,单位:m)与制 1 动距离(d ,单位:m)之和.如图为某实验所测得的数据,其中“KPH”表示刹车时汽车的初速度v(单位: 2 km/h).根据实验数据可以推测,下面四组函数中最适合描述d ,d 与v的函数关系的是 ( ) 1 2 A.d=αv,d =β v B.d=αv,d =βv2 C.d=α v,d =βv D.d=α v,d =βv2 1 2 1 2 1 2 1 2 【答案】B 【分析】设d 1v  =fv  ,d 2v  =gv  ,根据图象得到函数图象上的点,作出散点图,即可得到答案. 【详解】设d 1v  =fv  ,d 2v  =gv  . 由图象知,d 1v  =fv  过点40,8.5  ,50,10.3  ,60,12.5  ,70,14.6  ,80,16.7  ,90,18.7  ,100,20.8  , 110,22.9  ,120,25  ,130,27.1  ,140,29.2  ,150,31.3  ,160,33.3  ,170,35.4  ,180,37.5  . 作出散点图,如图1. 由图1可得,d 与v呈现线性关系,可选择用d=αv. 1 1 d 2v  =gv  过点40,8.5  ,50,16.2  ,60,23.2  ,70,31.4  ,80,36  ,90,52  ,100,64.6  ,110,78.1  , 120,93  ,130,108.5  ,140,123  ,150,144.1  ,160,164.3  ,170,183.6  ,180,208  . 作出散点图,如图2.由图2可得,d 与v呈现非线性关系,比较之下,可选择用d =βv2. 2 2 故选:B. 【变式训练】 1 (2024·河北省·高三模拟)现有甲、乙两组数据,每组数据均由六个数组成,其中甲组数据的平均数为3, 方差为5,乙组数据的平均数为5,方差为3.若将这两组数据混合成一组,则新的一组数据的方差为 ( ) A.3.5 B.4 C.4.5 D.5 【答案】D 【分析】利用平均数和方差公式可求得新数据的方差. 【详解】设甲组数据分别为x 、x 、⋯、x ,乙组数据分别为x 、x 、⋯、x , 1 2 6 7 8 12 1 6 6 1 6 甲组数据的平均数为 6 x i =3,可得x i =18,方差为 6 x i -3 i=1 i=1 i=1 40  6  2=5,可得 x i -3 i=1   2=30, 1 12 12 1 12 乙组数据的平均数为 6 x i =5,可得x i =30,方差为 6 x i -5 i=7 i=7 i=7  12  2=3,可得 x i -5 i=7   2=18, 1 12 18+30 混合后,新数据的平均数为 x = =4, 12 i 12 i=1 1 6 方差为 12 x i -4 i=1  12  2+ x i -4 i=7      2   1 6 = 12 x i -3-1 i=1  12  2+ x i -5+1 i=7      2   1 6 = 12 x i -3 i=1  12  2+ x i -5 i=7  6  2-2 x i -3 i=1  12  +2 x i -5 i=7      +12   1 = × 30+18-2×3-3 12  ×6+2×5-5   ×6+12  =5. 故选:D. 2 (2022下·山西运城·高二校联考阶段练习)已知n为满足T=a+C 2 1 022 +C 2 2 022 +C 2 3 022 +⋯+C 2 2 0 0 2 2 2 2 a≥3  能被9整除的正整数a的最小值,则x2-x+2  x-1  n的展开式中含x10的项的系数为 . 【答案】-10 【分析】分析可得T=9-1  674+a-1,利用二项式定理的展开式可求得正整数a的最小值,可得出n的值,然 后写出x2-x+2  x-1  n展开式的通项,令x的指数为10,求出对应的参数值,代入通项即可求得结果. 【详解】T=a+C 2 1 022 +C 2 2 022 +C 2 3 022 +⋯+C 2 2 0 0 2 2 2 2=22022+a-1=8674+a-1=9-1  674+a-1 =9674-C1 ⋅9673+C2 ⋅9672-⋯-C673⋅9+a能被9整除,则a能被9整除, 674 674 674 因为a≥3,则正整数a的最小值为9,即n=9, x-1  9展开式的通项为T k+1 =C 9 k⋅-1  k⋅x9-k, 因为x2-x+2  x-1  9=x2 x-1  9-xx-1  9+2x-1  9, 在x2T r+1 =C 9 r⋅x11-r⋅-1  r中,由11-r=10可得r=1, 在xT m+1 =C 9 m⋅x10-m⋅-1  m中,由10-m=10可得m=0,在2T k+1 =2C 9 k⋅-1 41  k⋅x9-k中,9-k≤9. 所以,展开式中含x10的项的系数为-C1-C0=-10. 9 9 故答案为:-10. 3 (2022·贵州·高二统考竞赛)如图,“爱心”是由曲线C:x2+y2=2|y|(x≤0)和C :|y|=cosx+1(0≤x≤ 1 2 -1≤x≤π π)所围成的封闭图形,在区域Ω= (x,y) -2≤y≤2   内任取一点A,则A取自“爱心”内的概率P=  . 3π 【答案】 4π+4 【详解】解法1.区域Ω的面积为S=4×(π+1)=4π+4, π 爱心面积S =π×12+2 (1+cosx)dx =π+2(x+sinx) π =π+2π=3π, A 0 0 S 3π ∴P= A = . S 4π+4 3π 故答案为: . 4π+4 1 解法2.在图中的阴影部分面积S = ×2×2π=π, 阴影 4 3π 所以爱心面积为π×12+2π=3π,∴P= . 4π+4 3π 故答案为: . 4π+4 4 (2018·全国·高三竞赛)设n为正整数.从集合1,2,⋯,2015  中任取一个正整数n恰为方程  n  2  = n   3  +  n  6  的解的概率为 (x  表示不超过实数x的最大整数). 1007 【答案】 2015 【详解】当n=6kk∈Z +  时,  n  2  =  6k  2  =3k,  n  3  +  n  6  =  6k  3  +  6k  6  =2k+k=3k. 满足题中方程的n为6,12,⋯,2010,共335个; 当n=6k-5k∈Z +  时,  n  2  =  6k-5  2  =3k-3, n   3  +  n  6  =  6k-5  3  +  6k-5  6  =2k-2+k-1=3k-3. 满足题中方程的n为1,7,13,⋯,2011,共336个; 当n=6k-4k∈Z +  时,  n  2  =  6k-4  2  =3k-2, n   3  +  n  6  =  6k-4  3  +  6k-4  6  =2k-2+k-1=3k-3. 满足题中方程的n不存在;当n=6k-3k∈Z + 42  时,  n  2  =  6k-3  2  =3k-2, n   3  +  n  6  =  6k-3  3  +  6k-3  6  =2k-1+k-1=3k-2. 满足题中方程的n为3,9,15,⋯,2013,共336个; 当n=6k-2k∈Z +  时,  n  2  =  6k-2  2  =3k-1, n   3  +  n  6  =  6k-2  3  +  6k-2  6  =2k-1+k-1=3k-2. 满足题中方程的n不存在; 当n=6k-1k∈Z +  时,  n  2  =  6k-1  2  =3k-1, n   3  +  n  6  =  6k-1  3  +  6k-1  6  =2k-1+k-1=3k-2. 满足题中方程的n不存在. 因此,从集合1,2,⋯,2015  335+336+336 1007 中任取一个正整数n恰为题中方程的解的概率为 = . 2015 2015 【题型14三角函数小题新考点】 1 (2024浙江省温州高三)已知函数fx  =asin2x+bcos2xab≠0  π 的图象关于直线x= 对称,若存在 6 x 1 ,x 2 ,⋯,x n ,满足 fx 1  -fx 2   + fx 2  -fx 3   +⋯+ fx n-1  -fx n   =24b,其中n≥2,n∈N + ,则n的 最小值为 ( ) A.6 B.7 C.8 D.9 【答案】B 【分析】首先利用辅助角公式和对称轴方程可得a= 3b,计算出fx  的值域为-2b,2b  ,根据题意可得 fx n-1  -fx n   ≤ 2b--2b   =4b,因此当且仅当 fx 1  -fx 2   = fx 2  -fx 3   =⋯= fx n-1  -fx n   =4b时,n的最小值为7. 【详解】由fx  =asin2x+bcos2xab≠0  可得 fx  = a2+b2sin2x+φ  b ,其中tanφ= ; a 又因为fx  π π π 的图象关于直线x= 对称,所以需满足2× +φ= +kπ,k∈Z, 6 6 2 π π 解得φ= +kπ,k∈Z,即tanφ=tan +kπ 6 6  3 = ,k∈Z; 3 b 3 可得tanφ= = ,即a= 3b,所以fx a 3  π =2bsin2x+ +kπ 6  ,k∈Z 由正弦函数值域可得fx  π =2bsin2x+ +kπ 6  ∈-2b,2b  若要求满足 fx 1  -fx 2   + fx 2  -fx 3   +⋯+ fx n-1  -fx n   =24b的n的最小值, 只需满足 fx n-1  -fx n   取最大值即可,而 fx n-1  -fx n   ≤ 2b--2b   =4b, 所以当且仅当 fx 1  -fx 2   = fx 2  -fx 3   =⋯= fx n-1  -fx n   =4b时满足题意, 即 fx 1  -fx 2   + fx 2  -fx 3   +⋯+ fx n-1  -fx n   =24b=6×4b; 所以n-1=6,得n=7,即n的最小值为7. 故选:B 【变式训练】 1 (2024·辽宁重点高中·高三模拟)(多选)已知对任意角α,β均有公式sin2α+sin2β= 2sinα+β  cosα-β  .设△ABC的内角A,B,C满足sin2A+sinA-B+C  =sinC-A-B  1 + .面 2积S满足1≤S≤2.记a,b,c分别为A,B,C所对的边,则下列式子一定成立的是 ( ) 1 a A.sinAsinBsinC= B.2≤ ≤2 2 4 sinA C.8≤abc≤16 2 D.bcb+c 43  >8 【答案】CD 【分析】结合已知sin2α+sin2β=2sinα+β  cosα-β  对sin2A+sinA-B+C  =sinC-A-B  1 + 2 进行变形化简即可得sinAsinBsinC的值,从而判断A;根据正弦定理和三角形面积,借助于△ABC外接圆 a 半径R可求 =2R的范围,从而判断B;根据sinAsinBsinC的值,结合△ABC外接圆半径R即可求 sinA abc的范围,从而判断C;利用三角形两边之和大于第三边可得bcb+c  >bc⋅a,从而判断D﹒ 【详解】∵△ABC的内角A、B、C满足sin2A+sinA-B+C  =sinC-A-B  1 + , 2 ∴sin2A+sinπ-2B  =sinC-π+C  1 1 + ,即sin2A+sin2B=-sin2C+ , 2 2 1 ∴sin2A+sin2B+sin2C= , 2 由题可知,sin2α+sin2β=2sinα+β  cosα-β  , ∴2sinA+B  cosA-B  1 +sin2C= , 2 ∴2sinCcosA-B  1 +2sinCcosC= 2 ∴2sinC cosA-B  -cosA+B    1 = , 2 1 ∴有sinAsinBsinC= ,故A错误; 8 设△ABC的外接圆半径为R, a b c 由正弦定理可知, = = =2R, sinA sinB sinC 1 1 R2 ∴S= absinC= ⋅2RsinA⋅2RsinB⋅sinC=2R2sinAsinBsinC= ∈1,2 2 2 4  , ∴R∈2,2 2  a ,∴ =2R∈4,4 2 sinA  ,故B错误; abc=8R3sinAsinBsinC∈8,16 2  ,故C正确; bcb+c  >abc≥8,故D正确. 故选:CD. 2 (2024· 江苏南通·高三模拟)(多选)若函数fx  =2sin2x⋅log sinx+2cos2x⋅log cosx,则 ( ) 2 2 A. fx  的最小正周期为π B. fx  π 的图像关于直线x= 对称 4 C. fx  的最小值为-1 D. fx  π 的单调递减区间为2kπ, +2kπ 4  ,k∈Z 【答案】BCD 【分析】先求出fx  的定义域,再对四个选项一一验证:对于A:利用定义法判断出fx  的最小正周期;对于 π B:由f -x 2  =fx  ,即可判断;对于C:设t=sin2x,得到gt  =t⋅log 2 t+1-t  ⋅log 21-t  ,t∈0,1  , 利用导数求出g(t) =-1,即可判断;对于D:利用复合函数单调性法则直接判断. min 【详解】由sinx>0,cosx>0得fx  π 的定义域为2kπ, +2kπ 2  ,k∈Z. π 对于A:当x∈0, 2  3 时,x+π∈π, π 2  不在定义域内,故fx+π  =fx  不成立,易知fx  的最小正周期为2π,故选项A错误; π 对于B:又f -x 2 44  =2cos2x⋅log 2 cosx+2sin2x⋅log 2 sinx=fx  ,所以fx  π 的图像关于直线x= 对称, 4 所以选项B正确; 对于C:因为fx  =sin2x⋅log 2 sin2x+cos2x⋅log 2 cos2x,设t=sin2x,所以函数转化为gt  =t⋅log t+ 2 1-t  ⋅log 21-t  ,t∈0,1  ,g t  =log 2 t-log 21-t  , 由g t  1 >0得, 0、10-6sin2x>0, 9 16 f(x)= + 6sin2x+3 10-6sin2x  6sin2x+3+10-6sin2x ×  13 1 910-6sin2x = 9+16+ 13  166sin2x+3 + 6sin2x+3      10-6sin2x  1 910-6sin2x ≥ 25+2 13  166sin2x+3 × 6sin2x+3   10-6sin2x  1 = 25+2×12 13  49 = , 13 910-6sin2x 当且仅当  166sin2x+3 = 6sin2x+3  3 ,即sin2x= 时,等号成立. 10-6sin2x 7 49 故答案为: . 13 4 (2024·河北省·高三模拟)蚊香具有悠久的历史,我国蚊香的发明与古人端午节的习俗有关.如图为某 校数学社团用数学软件制作的“蚊香”. 画法如下:在水平直线上取长度为1的线段AB,作一个等边三角形 ABC,然后以点B为圆心,AB为半径逆时针画圆弧交线段CB的延长线于点D(第一段圆弧),再以点C为圆 心,CD为半径逆时针画圆弧交线段AC的延长线于点E,再以点A为圆心,AE为半径逆时针画圆弧⋯⋯ 以此类推,当得到的“蚊香”恰好有15段圆弧时,“蚊香”的长度为 ( )A.44π B.64π C.70π D.80π 【答案】D 【分析】利用扇形弧长公式及等差数列求和公式计算即可. 2π 【详解】由题意每段圆弧的中心角都是 ,每段圆弧的半径依次增加1, 3 2π 则第n段圆弧的半径为n,弧长记为a ,则a = ⋅n, n n 3 2π 所以S 15 = 3 1+2+3+⋯+15 45  =80π. 故选:D. 5 (2024·浙江·高三期末)已知0 3 C.x+x <2x D.x+x >2x x x x x 1 3 2 1 3 2 1 3 1 3 【答案】C tanx 【分析】根据导数的几何意义求出曲线f(x)在点(x,sinx),(x ,sinx ),(x ,sinx )处的切线方程,进而 1 1 1 2 2 3 3 x 1 tanx tanx x -x = 2 = 3 =1即可判断AB;画出函数y=tanx与y=x图象,由k 0,x -x -π>0,所以(x -x)(x -π-x )<(x -x )(x -π-x), 2 1 3 2 2 1 3 2 3 2 2 1 即xπ+x π<2πx ,解得x+x <2x ,故C正确,D错误. 1 3 2 1 3 2 故选:C 【点睛】关键点点睛:证明选项CD的关键是根据tanx=x(i=1,2,3)构造新函数tanx=x,通过转化的思想 i i 和数形结合思想分析是解题的关键. 【题型15实际应用相关新考点】 1 (2024·浙江温州·高三)著名数学家、物理学家牛顿曾提出:物体在空气中冷却,如果物体的初始温度为 θ 1 °C,空气温度为θ 0 °C,则t分钟后物体的温度θ(单位:°C)满足:θ=θ 0 +θ 1 -θ 0 46  e-kt.若常数k=0.05,空 气温度为30°C,某物体的温度从90°C下降到50°C,大约需要的时间为( )(参考数据:ln3≈1.1) A.16分钟 B.18分钟 C.20分钟 D.22分钟 【答案】D 【分析】由已知条件得出θ 0 =30,θ 1 =90,θ=50,代入等式θ=θ 0 +θ 1 -θ 0  e-0.05t,求出t即可得出结论. 【详解】由题知θ 0 =30,θ 1 =90,θ=50,所以,50=30+90-30  1 e-0.05t,可得e-0.05t= , 30 1 所以,-0.05t=ln =-ln3,∴t=20ln3≈22. 3 故选:D. 【变式训练】 1 (2024上·河南·高三校联考期末)据科学研究表明,某种玫瑰花新鲜程度y与其花朵凋零时间t(分钟) (在植物学上t表示从花朵完全绽放时刻开始到完全凋零时刻为止所需的时间)近似满足函数关系式:y=b⋅ t 1 1 210(b为常数),若该种玫瑰花在凋零时间为10分钟时的新鲜程度为 ,则当该种玫瑰花新鲜程度为 时, 10 2 其凋零时间约为(参考数据:lg2≈0.3) ( ) A.3分钟 B.30分钟 C.33分钟 D.35分钟 【答案】C 1 【分析】根据已知条件,结合待定系数法,求出b的值,再将y= 代入函数中,即可求解 2 1 1 1 1 t t 10 【详解】由题意得 =2b,则b= ,令 = ⋅210,即210=10,解得t= ≈33. 10 20 2 20 lg2 故选:C. 2 (2024上·北京房山·高三统考期末)保护环境功在当代,利在千秋,良好的生态环境既是自然财富,也是 经济财富,关系社会发展的潜力和后劲.某工厂将生产产生的废气经过过滤后排放,已知过滤过程中的污染 物的残留数量P(单位:毫米/升)与过滤时间t(单位:小时)之间的函数关系为P=P⋅e-kt(t≥0),其中k为常 0 数,k>0,P为原污染物数量.该工厂某次过滤废气时,若前9个小时废气中的污染物恰好被过滤掉80%,那 0 1 么再继续过滤3小时,废气中污染物的残留量约为原污染物的(参考数据: 5  1 3≈0.585) ( ) A.12% B.10% C.9% D.6% 【答案】A 1 1 【分析】根据题意可得P⋅e-9k= P,解得e-3k= 0 5 0 5  1 3,从而求得关于残留数量与过滤时间的函数关系式,再 将t=12代入即可求得答案. 1 1 1 【详解】因为前9个小时废气中的污染物恰好被过滤掉80%,所以P⋅e-9k= P,即e-9k= ,所以e-3k= 0 5 0 5 5 1 3. 再继续过滤3小时,废气中污染物的残留量约为P⋅e-12k=P×e-3k 0 0 47  1 4=P× 0 5  4 1 3≈ ×0.585×P≈12%P. 5 0 0 故选:A. 3 (2023上·宁夏银川·高三宁夏育才中学校考阶段练习)“开车不喝酒,喝酒不开车.”,饮酒驾驶和醉酒驾 驶都是根据驾驶人员血液、呼气酒精含量来确定,经过反复试验,一般情况下,某人喝一瓶啤酒后血液中的酒 精含量值fx  随着时间x(小时)的变化规律,可以用函数模型fx  π 40sin x = 3   +13, 0≤x<2  来拟 90⋅e-0.5x+14, x≥2 合,则该人喝一瓶啤酒至少经过多少小时后才可以驾车?( )(参考数据:ln15≈2.71,ln30≈3.40) 驾驶行为类别 酒精含量值(mg/100mL) 饮酒驾驶 ≥20,<80 醉酒驾驶 ≥80 A.5 B.6 C.7 D.8 【答案】B 【分析】可结合分段函数建立不等式90e-0.5x+14<20,利用指数不等式的求解即可. π 【详解】对于f(x)=40sin x 3  +13, π 2π 由0≤x<2,则0≤ x< ,函数f(x)先增后减, 3 3 3 当x∈ ,2 2  时,f(x)=20 3+13>20, 所以,该人喝一瓶啤酒后的2个小时内,其血液酒精含量可能大于20, 则驾车只能在2个小时之后,令  n 90 ≥ ⋅e 2 -0.5n+14<20 ,即   n e- ≥ 0.5n 2 < 1 , 15 解得n>2ln15≈2×2.71=5.42, ∵n∈N*,∴n的最小值为6,故至少经过6小时才可以驾车. 故选:B. 4 (2024·山东青岛·高三期末)1551年奥地利数学家、天文学家雷蒂库斯在《三角学准则》中首次用直角三 角形的边长之比定义正割和余割,在某直角三角形中,一个锐角的斜边与其邻边的比,叫做该锐角的正割,用 sec(角)表示;锐角的斜边与其对边的比,叫做该锐角的余割,用csc(角)表示,则csc10°- 3sec10°= ( ) A. 3 B.2 3 C.4 D.8 【答案】C 【分析】根据给定的定义,利用锐角三角函数的定义转化为角的正余弦,再利用二倍角公式、辅助角公式求解 作答. 【详解】依题意,10°角可视为某直角三角形的内角, 1 1 由锐角三角函数定义及已知得csc10°= ,sec10°= , sin10° cos10° 2 1cos10°- 3sin10° 1 3 cos10°- 3sin10° 2 2 所以csc10°- 3sec10°= - = = sin10° sin10° sin10°cos10°  = sin10°cos10° 4sin30°-10°  =4. sin20° 故选:C【题型16三角函数解答题新考点】 π 1 (2024·高三·期末)设02; x-sinx (3)若tanx+2sinx-ax>0,求实数a的取值范围. 1 【答案】(1) 16 (2)证明见解析 (3)a≤3 【分析】(1)由二倍角公式及同角三角函数的商数关系计算即可; (2)先利用导数证:x-sinx>0,再利用导数研究φx 48  =tanx+2sinx-3x的单调性与最值即可; (3)构造函数fx  =tanx+2sinx-ax,利用换元法先判定f x  的单调性及值域,然后含参讨论结合隐零 点判定fx  的单调性及值域即可. 【详解】(1)由二倍角公式及同角三角函数的商数关系可知: cos4x-4cos2x+3 2cos22x-4cos2x+2 cos2x-1 = = cos4x+4cos2x+3 2cos22x+4cos2x+2 cos2x+1  2 -2sin2x = 2cos2x  2 =-tan2x  1 2= 16 π (2)证明:先证当00. 2 令mx  =x-sinx,则m x  π =1-cosx>0在0m0  =0, π 即当00. 2 tanx-x 要证 >2,只需证明tanx-x>2x-sinx x-sinx  ,即证tanx+2sinx-3x>0 令φx  π =tanx+2sinx-3x,x∈0, 2  , 则φ x  1 2cos3x-3cos2x+1 cosx-1 = +2cosx-3= = cos2x cos2x  2 2cosx+1  >0. cos2x 1 3 1 (或 +2cosx-3≥3× ⋅cosx⋅cosx-3=0,当且仅当cosx=1时等号成立,) cos2x cos2x π 而x∈0, 2  ,则00, ∴在φx  π 在0, 2  上单调递增,∴φx  >φ0  =0, 即tanx+2sinx-3x>0 π tanx-x ∴当02. 2 x-sinx (3)令fx  π =tanx+2sinx-ax,x∈0, 2  ,则f0  =0,f x  1 = +2cosx-a, cos2x π 令t=cosx,则t在x∈0, 2  上单调递减,t∈0,1  ,f x  =gt  1 = +2t-a, t2 而g t  2 =- +2<0,∴gt t3  在t∈0,1  上递减,∴f x  π 在x∈0, 2  上递增 ∴f x  的值域为3-a,+∞ (i)当3-a≥0,即a≤3时,f x 49  ≥0恒成立,所以fx  π 在x∈0, 2  递增, ∴fx  >0,∴a≤3符合题意; (ii)当3-a<0,即a>3时,f 0  <0, π ∴存在x ∈0, 0 2  使得f x 0  =0 ∴当x∈0,x 0  时,f x  <0,fx  递减,此时fx  <0,不符题意. 综上知,a≤3. 【变式训练】 1 (2024·河北省·高三模拟)已知定义域为R的函数hx  满足:对于任意的x∈R,都有hx+2π  =hx  +h2π  ,则称函数hx  具有性质P. (1)判断函数fx  =2x,gx  =cosx是否具有性质P;(直接写出结论) (2)已知函数fx  =sinωx+φ  3 5 π  <ω< ,φ< 2 2 2  ,判断是否存在ω,φ,使函数fx  具有性质P?若存 在,求出ω,φ的值;若不存在,说明理由; (3)设函数fx  具有性质P,且在区间0,2π  上的值域为 f0  ,f2π    .函数gx  =sin fx    ,满足 gx+2π  =gx  ,且在区间0,2π  上有且只有一个零点.求证:f2π  =2π. 【答案】(1)函数fx  =2x具有性质P;gx  =cosx不具有性质P. (2)ω=2,φ=0 (3)证明见解析 【分析】(1)利用定义判断即可; (2)假设函数fx  具有性质P,可求出φ=0,进而可得ω=2,从而可得fx  =sin2x,再根据定义进行验证, 即可得到答案; (3)由函数fx  具有性质P及(2)可知,f(0)=0,进而可得fx  在0,2π  的值域为0,kπ  ,k∈Z且k>0, 由gx  在区间0,2π  上有且只有一个零点可证明当k>2时不符合题意,再求解当k=1时与gx  是以2π 为周期的周期函数矛盾,从而可得k=2,即可证明. 【详解】(1)因为fx  =2x,则fx+2π  =2(x+2π)=2x+4π,又f2π  =4π, 所以fx+2π  =f(x)+f(2π),故函数fx  =2x具有性质P; 因为gx  =cosx,则gx+2π  =cos(x+2π)=cosx,又g2π  =cos2π=1, g(x)+g(2π)=cosx+1≠g(x+2π),故gx  =cosx不具有性质P. (2)若函数fx  具有性质P,则f0+2π  =f(0)+f(2π),即f(0)=sinφ=0, π 因为φ< ,所以φ=0,所以fx 2  =sin(ωx); 若f(2π)≠0,不妨设f(2π)>0,由fx+2π  =f(x)+f(2π), 得f2kπ  =f(0)+kf(2π)=kf(2π)(k∈Z)(*), 只要k充分大时,kf(2π)将大于1,而fx  的值域为[-1,1], 故等式(*)不可能成立,所以必有f(2π)=0成立, 3 5 即sin(2ωπ)=0,因为 <ω< ,所以3π<2ωπ<5π, 2 2 所以2ωπ=4π,则ω=2,此时fx  =sin2x, 则fx+2π  =sin2(x+2π)=sin2x, 而f(x)+f(2π)=sin2x+sin4π=sin2x,即有fx+2π  =f(x)+f(2π)成立, 所以存在ω=2,φ=0使函数fx  具有性质P. (3)证明:由函数fx  具有性质P及(2)可知,f(0)=0,由gx+2π 50  =gx  可知函数gx  是以2π为周期的周期函数,则g2π  =g(0), 即sin(f(2π))=sin(f(0))=0,所以f(2π)=kπ,k∈Z; 由f(0)=0,f(2π)=kπ以及题设可知, 函数fx  在0,2π  的值域为0,kπ  ,所以k∈Z且k>0; 当k>2,fx  =π及fx  =2π时,均有gx  =sin fx    =0, 这与gx  在区间0,2π  上有且只有一个零点矛盾,因此k=1或k=2; 当k=1时,f(2π)=π,函数fx  在0,2π  的值域为0,π  , 此时函数gx  的值域为0,1  , 而fx+2π  =f(x)+π,于是函数fx  在2π,4π  的值域为π,2π  , 此时函数gx  的值域为-1,0  , 函数gx  =sin fx    在当x∈0,2π  时和x∈2π,4π  时的取值范围不同, 与函数gx  是以2π为周期的周期函数矛盾, 故k=2,即f(2π)=2π,命题得证. 【点睛】关键点睛:本题考查了函数新定义问题,解决此类问题,关键是读懂题意,理解新定义的本质,把新情 境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答即可. 2 (2024·安徽省·高三模拟)在△ABC中,角A,B,C的对边分别为a,b,c,sin2B+sin2C=sin2A+ sinBsinC. (1)若△ABC的面积S=2 3,b+c=6,求a的值; (2)若函数fx  lnx =3x2-4x- +1在区间0,t cosA  上有零点,求t的取值范围. 【答案】(1)a=2 3 (2)1,+∞  【分析】(1)由正弦定理边化角结合余弦定理以及三角形面积公式即可得解. (2)利用导数判断单调性,进而得fx  =f1 min  =3-4+1=0,由此即可得解. 【详解】(1)∵△ABC中三边a,b,c的对角分别为A,B,C, a b c ∴ = = . sinA sinB sinC 又∵sin2B+sin2C=sin2A+sinBsinC, ∴b2+c2=a2+bc,即b2+c2-a2=bc, b2+c2-a2 1 ∴cosA= = . 2bc 2 1 1 1 3 ∵S=2 3= bcsinA= bc⋅ 1- = bc, 2 2 4 4 ∴bc=8, ∴a2=b2+c2-2bccosA=b+c  2-2bc1+cosA  1 =62-2×8×1+ 2  =12, ∴a=2 3. (2)fx  lnx =3x2- -4x+1=3x2-2lnx-4x+1(x>0), cosA f x  2 6x2-4x-2 2x-1 =6x- -4= = x x  3x+1  , x ∵x>0, ∴f x  在0,1  上为负,在1,+∞  上为正, ∴fx  在0,1  上为减函数,在1,+∞  上为增函数, ∴fx  =f1 min  =3-4+1=0,∴fx 51  在0,+∞  上只有一个零点. ∴要使fx  在0,t  上有零点,则t的取值范围是1,+∞  . π 3 (浙江省杭州第二中学2021-2022学年高三上学期调研考试数学试题)在△ABC中,∠B= ,D为 2 BD AB+AD BC边上一点且 = . CD AC+AD (1)证明:△ABD和△ADC的内切圆半径相等; (2)若△ABC的三边长构成等差数列,求∠ADB的大小. π 【答案】(1)证明见解析;(2) 或arctan2 2. 3 【分析】(1)利用内切圆半径与面积周长的关系证明; (2)分c,a,b成等差数列和a,c,b成等差数列两种不同情况,根据等差中项的性质和勾股定理分别求的a,b,c 的比例关系,并不妨设a,b,c的最简值进行计算,设出BD的长,根据已知条件列出方程,化简整理后得到三 次方程,进行适当配凑,求解即得BD的长,进而得到所求角度或其正切值. 1 【详解】(1)如图所示,设△ABD和△ADC的面积为S ,S ,周长为l ,l ,内切圆半径分别为r ,r ,则S= rl 1 2 1 2 1 2 i 2 i i i=1,2  , S rl ∴ 1 = 1 1, S r l 2 2 2 S BD AB+AD BD+AB+AD l 由于 1 = = = = 1, S DC AC+AD DC+AC+AD l 2 2 r ∴ 1 =1,即r=r , r 1 2 2 ∴△ABD和△ADC的内切圆半径相等; (2)设△ABC的角A,B,C所对的边分别记作a,b,c, π ∵∠B= ,∴b为最大边. 2 ①当c,a,b成等差数列时,2a=c+b,又∵a2+c2=b2, ∴a2+c2=2a-c  a 4 2,3a2=4ac,3a=4c, = , c 3 不妨设a=4,c=3,则b=5, BD AB+AD 设BD=x,∵ = , CD AC+AD x 3+ 32+x2 ∴ = , 4-x 5+ 32+x2 化简得x3-4x2-3x+12=0, x-4  x2-3  =0, ∵00,St  3 单调递增,所以当t= 时, 3 3 三棱锥的侧面积S的最小值为S 3  27 = . 2 【题型18数列解答题新考点】 1 (2024·辽宁重点高中·高三模拟) 记 S 为数列 a n n  的前 n 项和,且满足 S = kna +pa +qn + n n n rk,p,q,r∈R  . 1 (1)若p=r=0,k= ,求证:数列a 2 n  是等差数列; (2)若k=q=0,p=2,r≠0,设b n =-1  S n+1 n,数列b r n  的前n项和为T,若对任意的k∈N*,都有T < n 2k-1 λk n m k 59  ,必有a m+1 -a =t”,则称数列{a }具有P(t)性质. k+1 n 2n (n=1,2) (1)若数列{a }满足a = n n 2n-5 n≥3,n∈N*    ,判断数列{a n }是否具有P(1)性质?是否具有P(4)性 质? (2)对于无穷数列{a },设T={x|x=a-a,ik,满足a -a =0,即a =a , m k m k 由性质P(0)的含义可得a =a ,a =a ,⋯,a =a ,a =a , m+1 k+1 m+2 k+2 2m-k-1 m-1 2m-k m 所以数列{a }中,从第k项开始的各项呈现周期性规律: n a ,a ,⋯,a 为一个周期中的各项, k k+1 m-1 所以数列{a }中最多有m-1个不同的项, n 所以T最多有C2 个元素,即T为有限集; m-1 (3)因为数列{a }具有P(2)性质,又具有P(3)性质, n 所以存在M',N',使得a -a =2,a -a =3, M'+P M' N'+q N' 其中p,q分别是满足上述关系式的最小的正整数, 由性质P(2),P(3)的含义可得a -a =2,a -a =3, M'+p+k M'+k N'+q+k N'+k 若M'N',则取k=M'-N',可得a -a =3, M'+q M' 记M=maxM',N'  ,则对于a , M 有a -a =2,a -a =3,显然p≠q, M+p M M+q M 由性质P(2),P(3)的含义可得:a -a =2,a -a =3, M+p+k M+k N+q+k N+k 所以a -a =(a -a )+(a -a )+⋯+(a -a ) M+pq M M+pq M+(q-1)p M+(q-1)p M+(q-2)p M+p M =2qa -a =(a -a )+(a -a )+⋯+(a -a )=3p, M+pq M M+pq M+(p-1)q M+(p-1)q M+(p-2)q M+q M 所以2q=3p, 又p,q满足a -a =2,a -a =3的最小的正整数, M+p M M+q M 所以q=3,p=2,a -a =2,a -a =3, M+2 M M+3 M 所以a -a =2,a -a =3, M+2+k M+k M+3+k M+k 所以a =a =a +2k,a =a =a +3k, M+2k M+2(k-1)+2 M M+3k M+3(k-1)+3 M取N=M+3,所以,若k是偶数,则a =a +k, N+k N 若k是奇数, 则a =a =a +(k-3)=a +3+(k-3)=a +k, N+k N+3+(k-3) N+3 N N 所以,a =a +k, N+k N 所以a ,a ,a ,⋯,a ,⋯是公差为1的等差数列. N N+1 N+2 N+k 【点睛】该题考查的是有关与数列相关的创新题,涉及到的知识点有对新定义的理解,属于难题. 2 (2024·河北省·高三模拟)最新研发的某产品每次试验结果为成功或不成功,且每次试验的成功概率为 p(00)元,若试验成功则获利8a元,则该公司应 如何决策投资?请说明理由. 【答案】(1)证明见解析; (2)应该投资,理由见解析 【分析】(1)由题意,X=1,2,3,...,8,P(X=k)=p(1-p)k-1,k=1,2,⋯,7,P(X=8)=(1-p)7,列出分布列,列 出E(X),乘公比错位相减法求和S=(1-p)0+2(1-p)1+3(1-p)2+⋯+7(1-p)6,分析可证明EX  1 < ; p 1 (2)由(1)可得E(X)< =5,分析即得解 p 【详解】(1)由题意,X=1,2,3,...,8 故P(X=k)=p(1-p)k-1,k=1,2,⋯,7,P(X=8)=(1-p)7 分布列如下: X 1 2 3 4 5 6 7 8 P p p(1-p) p(1-p)2 p(1-p)3 p(1-p)4 p(1-p)5 p(1-p)6 (1-p)7 所以X的数学期望E(X)=p(1-p)0+2p(1-p)1+3p(1-p)2+⋯+7p(1-p)6+8(1-p)7, 记S=(1-p)0+2(1-p)1+3(1-p)2+⋯+7(1-p)6, (1-p)S=(1-p)1+2(1-p)2+3(1-p)3+⋯+7(1-p)7, 作差可得,pS=1-p  0+1-p  1+1-p  2+⋯+1-p  6-71-p  1-1-p 7=  7 -71-p p  7, 1-(1-p)7 1-(1-p)8 1 则E(X)=pS+8(1-p)7= +(1-p)7= < ; p p p 1 (2)由(1)可知E(X)< =5,则试验成本的期望小于5a元, p 试验成功则获利8a元,且8a>5a,则该公司应该投资该产品 3 (2024·安徽省·高三模拟)同余定理是数论中的重要内容.同余的定义为:设a,b∈Z,m∈N*且m> 1.若m(a-b)则称a与b关于模m同余,记作a≡b(modm)(“|”为整除符号). (1)解同余方程x2-x≡0(mod3); (2)设(1)中方程的所有正根构成数列a n  ,其中a . 6 【分析】(1)根据T2=an+1,可得T2 =an+2,两式相除可得an =an+1,两边取对数并构造常数列,即可求得答 n n n+1 n+1 n+1 n 案. (2)由(1)的结论,求出b ,再根据单调数列的意义列式求解即得. n 【详解】(1)由T 为正项数列a n n  T 的前n项的乘积,得 n+1 =a ,由T2=an+1,得T2 =an+2, T n+1 n n n+1 n+1 n T2 an+2 于是 n+1 =a2 = n+1,即an =an+1,两边取对数得lgan =lgan+1, T2 n+1 an+1 n+1 n n+1 n n n 即nlga n+1 =n+1  lga lga lga ,整理得 n+1 = n, n n+1 n lga 因此数列 n  n  lga lga 是常数列,即 n = 1 =lg3,于是lga =nlg3=1g3n, n 1 n 所以a =3n. n (2)由(1)知,b =k⋅3n-n, n 由数列b n  为递增数列,得∀n∈N*,b >b ⇔k⋅3n+1-(n+1)-k⋅3n+n>0, n+1 n 即∀n∈N*,2k⋅3n-1>0⇔k> 1 ,而数列  1 2×3n 2×3n  1 1 是递减数列, ≤ ,当且仅当n=1时等号, 2×3n 61 所以实数k的取值范围是k> . 6 【题型19统计概率解答题新考点】 1 (2024·浙江宁波·高三期末)某款游戏预推出一项皮肤抽卡活动,玩家每次抽卡需要花费10元,现有以下两 种方案.方案一:没有保底机制,每次抽卡抽中新皮肤的概率为p ;方案二:每次抽卡抽中新皮肤的概率为 1 p ,若连续99次未抽中,则第100次必中新皮肤.已知0

0,y >0,k=1,2,⋯,n,x =y =1.指标D(X‖Y)可用来刻画X和Y的相似 k k k k k k=1 k=1 n x 程度,其定义为D(X‖Y)=x ln k.设X~B(n,p),00, p 1-p 令φp 64  1 1 = + -2ln2,则φ p p 1-p  2p-1 = p2 1-p  , 2 1 当00,φp  单调递增; 所以φp  1 >φ 2  1 =4-2ln2>0,则g(p)单调递增,而g 2  =0, 1 所以f(p)在0, 2  1 为负数,在 ,1 2  为正数, 1 则f(p)在0, 2  1 单调递减,在 ,1 2  单调递增, 3 所以D(X‖Y)的最小值为ln3- ln2. 2 (3)令hx  =lnx-x+1,则h x  1 1-x = -1= , x x 当00,hx  单调递增; 当x>1时,h x  <0,hx  单调递减; 所以hx  ≤h1  =0,即lnx-x+1≤0,当且仅当x=1时,等号成立, 1 1 1 则当x>0时,lnx≤x-1,所以ln ≤ -1,即lnx≥1- , x x x n x n y 故D(X‖Y)=x ln k ≥ x 1- k k y k x k=1 k k=1 k  n  = x -y k k k=1  n n  =x -y =0, k k k=1 k=1 当且仅当对所有的k,x =y 时等号成立. k k 【点睛】关键点睛:本题解决的关键是充分理解新定义指标D(X‖Y),熟练掌握对数的运算法则即可得解. 2 (2024·安徽省·高三模拟)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下 落,在下落的过程中,小球将遇到黑色障碍物3次,最后落入A袋或B袋中,已知小球每次遇到障碍物时,向 2 1 左、右两边下落的概率分别是 , .设小球向左的次数为随机变量X. 3 3 (1)求随机变量X的概率分布列; (2)分别求出小球落入A袋和B袋中的概率. 【答案】(1)分布列见解析 1 2 (2)小球落入A袋和B袋中的概率分别为 和 3 32 【分析】(1)易得X∼B3, 3 65  ,根据二项分布可得出答案; (2)小球落入A袋则小球一直向左或一直向右,从而可求出小球落入A袋的概率,再利用对立事件的概率公 式可求得小球落入B袋的概率. 2 【详解】(1)解:由题意可知,X∼B3, 3  ,其中将向左的概率看成成功概率, 则PX=k  2 =Ck⋅ 3 3  k 1 ⋅ 3  3-k k=0,1,2,3  , 列表如下: P 0 1 2 3 1 2 4 8 X 27 9 9 27 (2)解:小球落入A袋的概率PA  =PX=3  +PX=0  1 8 1 = + = , 27 27 3 小球落入B袋中的概率PB  1 2 =1- = , 3 3 1 2 所以小球落入A袋和B袋中的概率分别为 和 . 3 3 3 (2024·安徽省·高三模拟)我国一科技公司生产的手机前几年的零部件严重依赖进口,2019年某大国对 其实施限制性策略,该公司启动零部件国产替代计划,与国内产业链上下游企业开展深度合作,共同推动产 业发展.2023年9月该公司最新发布的智能手机零部件本土制造比例达到」90%,以公司与一零部件制造公 司合作生产某手机零部件,为提高零部件质量,该公司通过资金扶持与技术扶持,帮助制造公司提高产品质 量和竞争力,同时派本公司技术人员进厂指导,并每天随机从生产线上抽取一批零件进行质量检测.下面是 某天从生产线上抽取的10个零部件的质量分数(总分1000分,分数越高质量越好):928、933、945、950、 959、967、967、975、982、994.假设该生产线生产的零部件的质量分数X近似服从正态分布Nμ,202  ,并把  这10个样本质量分数的平均数x作为μ的值. 参考数据:若X~Nμ,σ2  ,则Pμ-σ≤X≤μ+σ  ≈0.68. (1)求μ的值; (2)估计该生产线上生产的1000个零部件中,有多少个零部件的质量分数低于940? (3)若从该生产线上随机抽取n个零件中恰有ξ个零部件的质量分数在940,980  内,则n为何值时, Pξ=10  的值最大? 【答案】(1)μ=960 (2)160 (3)n=14 【分析】(1)由均值定义计算; (2)由已知得X~N960,202  ,根据正态分布的概率性质计算概率; (3)由题意ξ~Bn,0.68  ,则Pξ=10  =C10×0.6810×0.32n-10,记其为f(n),然后用作商法求得最大值时的n n 值.  28+33+45+50+59+67+67+75+82+94 【详解】(1)x=900+ =960, 10 所以μ=960. (2)由(1)知,X~N960,202  , PX<940  =PX<μ-σ  1-Pμ-σ≤X≤μ+σ =  1-0.68 ≈ =0.16. 2 2 该生产线上生产的1000个零部件中,质量分数低于940的个数约为 0.16×1000=160.(3)每个零部件的质量分数在940,980 66  内的概率为Pμ-σ≤X≤μ+σ  ≈0.68, 由题意可知ξ~Bn,0.68  , 则Pξ=10  =C10×0.6810×0.32n-10, n 设fn  =C10×0.6810×0.32n-10(n≥10), n fn+1 则  fn  C10 ×0.6810×0.32n-9 0.32n+0.32 = n+1 = , C10×0.6810×0.32n-10 n-9 n 0.32n+0.32 9.32 令 >1,得n< ≈13.7, n-9 0.68 所以当n≤13时,fn+1  >fn  , 0.32n+0.32 9.32 令 <1,得n> ≈13.7, n-9 0.68 所以当n≥14时,fn+1  - 时,h(x)>0,当- - 0,则b= - =- - , 27 3 3 a 此时h - 3  a =- 3  a a 2a a a - +a - +b=b+ - =0,而h- - 3 3 3 3 3  >0 故此时h(x)有2个零点; 综上, 当b>0,hx 2  =0,所以h(x)有2个零点.当b<0,hx 1  =0,所以h(x)有2个零点. 当a=0,有b=0,则h(x)有1个零点.  (2)因为PQ为C在点P处的切线,且Q∈C,所以P⊕Q=P,  故P⊕(P⊕Q)=P⊕P=0*,故 P⊕P   ⊕Q     ⊕Q=0*⊕Q=Q, 因为“⊕”运算满足交换律、结合律, 故 P⊕P   ⊕Q    ⊕Q=P⊕ P⊕Q⊕Q    =P⊕P⊕0*  =P⊕P,  故P⊕P=Q. y-y (3)直线PQ的斜率λ= x 1 -x 2 ,设PQ与C的第三个交点为x 3 ,y 3 1 2  , 则y 3 =λx 3 -x 1  +y ,代入y2=x3+ax +b得 1 3 3 3 λ2 x 3 -x 1  2+2λy 1x 3 -x 1  +y2=x3+ax +b, 1 3 3 而y2=x3+ax+b, 1 1 1 故λ2 x 3 -x 1  2+2λy 1x 3 -x 1  +x3+ax+b=x3+ax +b, 1 1 3 3 整理得到:λ2 x 3 -x 1  2+2λy 1x 3 -x 1  =x3 3 -x3 1 +ax 3 -x 1  , 故λ2 x 3 -x 1  +2λy 1 =x2 3 +x2 1 +x 1 x 3 +a即x2 3 +x 1 -λ2  x +x2+λ2x-2λy+a=0, 3 1 1 1 同理可得x2 3 +x 2 -λ2  x +x2+λ2x -2λy +a=0, 3 2 2 2 两式相减得:x 1 -x 2  x 3 +x2 1 -x2 2 +λ2 x 1 -x 2  -2λy 1 -y 2  =0, 故x 3 +x 1 +x 2  +λ2-2λ y 1 -y 2  =0, x-x 1 2 所以x 3 +x 1 +x 2  y-y +λ2-2λ2=0,故x =λ2-x-x ,故x = 1 2 3 1 2 3 x-x 1 2  2 -x-x , 1 2 y-y y-y 所以y = 1 2  1 2 3 x-x x-x 1 2 1 2   2   -2x 1 -x 2  +y , 1 因此P⊕Q的坐标为: y-y  1 2 x-x 1 2  2 y-y y-y -x-x , 1 2 - 1 2 1 2 x-x x-x 1 2 1 2   2   +2x 1 +x 2   -y 1  . 【点睛】思路点睛:函数新运算问题,需根据运算的性质选择合理的计算顺序来处理等式,而三次函数的零点 问题,注意结合极值的符号处理零点的个数. 【变式训练】1 (2024·全国·高三专题练习)下面是某同学在学段总结中对圆锥曲线切线问题的总结和探索,现邀请你 一起合作学习,请你思考后,将答案补充完整. (1)圆O:x2+y2=r2上点Mx 0 ,y 0 69  处的切线方程为 ?请说明理由. x2 y2 (2)椭圆 a2 + b2 =1(a>b>0)上一点x 0 ,y 0  处的切线方程为 ? x2 (3)P(m,n)是椭圆L: +y2=1外一点,过点P作椭圆的两条切线,切点分别为A,B,如图,则直线AB的方 3 程是 ?这是因为在Ax 1 ,y 1  ,Bx 2 ,y 2  xx x x 两点处,椭圆L的切线方程为 1 +y y=1和 2 +y y=1.两切 3 1 3 2 xm x m 线都过P点,所以得到了 1 +yn=1和 2 +y n=1,由这两个“同构方程”得到了直线AB的方程; 3 1 3 2 (4) 问题 (3) 中两切线 PA,PB 斜率都存在时,设它们方程的统一表达式为 y - n = k(x - m),由 y-n=k(x-m)   x2+3y2=3 ,得(1+3k2)x2+6k(n-km)x+3(n-km)2-3=0,化简得Δ=0,得(3-m2)k2+2mnk+ 1-n2=0.若PA⊥PB,则由这个方程可知P点一定在一个圆上,这个圆的方程为 ? 【答案】(1)y y+x x=r2,理由见解析; 0 0 x x y y (2) 0 + 0 =1 a2 b2 mx (3) +ny=1 3 (4)x2+y2=4 【分析】(1)分情况讨论斜率存在与否,斜率存在时根据直线垂直的斜率表示,利用点斜式即可求得方程,易知 斜率不存在时也满足方程,即可得出结果; x x (2)斜率存在时设出直线方程,联立直线和椭圆方程利用Δ=0得出表达式,代入整理即可得切线方程 0 + a2 y y 0 =1,当斜率不存在时切线方程为x=±a满足上式; b2 mx (3)根据同构方程可知点A,B都满足方程 +ny=1,即可知直线AB的方程; 3 (4)由PA⊥PB可知方程(3-m2)k2+2mnk+1-n2=0的两根乘积为-1,即可得m2+n2=4,即可知P点一 定在圆x2+y2=4上. 【详解】(1)圆O:x2+y2=r2上点Mx 0 ,y 0  处的切线方程为y y+x x=r2. 0 0 理由如下: k⋅k =-1  OM x ①若切线的斜率存在,设切线的斜率为k,则 y ,所以k=- 0, k = 0 y OM x 0 0 又过点Mx 0 ,y 0  x ,由点斜式可得y-y 0 =- y 0 x-x 0 0  , 化简可得,y y+x x=x2+y2=r2, 0 0 0 0 所以切线的方程为y y+x x=r2; 0 0 ②若切线的斜率不存在,则M(±r,0),此时切线方程为x=±r,满足方程y y+x x=r2; 0 0 综上所述,圆O:x2+y2=r2上点Mx 0 ,y 0 70  处的切线方程为y y+x x=r2. 0 0 (2)①当切线斜率存在时,设过点x 0 ,y 0  的切线方程为y=kx+m, x2 + y2 =1 联立方程a2 b2 ,整理得b2+a2k2 y=kx+m  x2+2kma2x+a2m2-a2b2=0, 由Δ=0可得2kma2  2-4b2+a2k2  a2m2-a2b2  =0, 所以a2k2-m2+b2=0 2kma2 ka2 由韦达定理可知2x =- ,即x =- , 0 b2+a2k2 0 m ka2 b2 把x =- 代入y=kx+m中,得m= , 0 m y 0 b2x b2 所以y=kx+m=- 0 + a2y y 0 0 x x y y 化简得 0 + 0 =1. a2 b2 ②当切线斜率不存在时,过x 0 ,y 0  的切线方程为x=±a,满足上式. 综上,椭圆上一点x 0 ,y 0  x x y y 的切线方程为 0 + 0 =1. a2 b2 (3)在Ax 1 ,y 1  ,Bx 2 ,y 2  xx x x 两点处,椭圆L的切线方程为 1 +yy=1和 2 +y y=1, 3 1 3 2 因为两切线都过点P(m,n), xm x m 所以得到了 1 +yn=1和 2 +y n=1, 3 1 3 2 mx 由这两个“同构方程”得到了直线AB的方程为 +ny=1; 3 (4)问题(3)中两切线PA,PB斜率都存在时,设它们方程的统一表达式为y-n=kx-m  y-n=k(x-m) 由  x2+3y2=3 ,可得(1+3k2)x2+6k(n-km)x+3(n-km)2-3=0, 由Δ=0,得(3-m2)k2+2mnk+1-n2=0,(*) 因为PA⊥PB, 则k ⋅k =-1, PA PB 所以(*)式中关于k的二次方程有两个解,且其乘积为-1, 1-n2 则k ⋅k = =-1, PA PB 3-m2 可得m2+n2=4, 所以圆的半径为2,圆心为原点,其方程为x2+y2=4. 2 (2023·安徽·统考一模)我们约定,如果一个椭圆的长轴和短轴分别是另一条双曲线的实轴和虚轴,则 x2 y2 称它们互为“姊妹”圆锥曲线.已知椭圆C 1 : 4 + b2 =100,且   1 2 t2-4 , yy = 12 1 2 t2-4 y 1 ∴ k AM = x 1 +2 = y 1 × x 2 -2 = y 1ty 2 +2 k y x+2 y BN 2 1 2 x-2 2  y 2ty 1 +6  tyy +2y = 1 2 1 tyy +6y 1 2 2 = ty 1 y 2 +2y 1 +y 2  -2y 2 tyy +6y 1 2 2 12t - 16t -2y - 4t -2y = t2-4 t2-4 2 = t2-4 2 =- 1 ; 12t +6y 12t +6y 3 t2-4 2 t2-4 2 y+y 2t 3 或由韦达定理可得 y 1 y 2 =- 3 ,即ty 1 y 2 =- 2 y 1 +y 2 1 2  , y 1 ∴ k AM = x 1 +2 = y 1 × x 2 -2 = y 1ty 2 +2 k y x+2 y BN 2 1 2 x-2 2  y 2ty 1 +6  = ty 1 y 2 +2y 1 = -3 2 y 1 +y 2 tyy +6y 1 2 2  +2y 1 -3 2 y 1 +y 2  +6y 2 y-3y 1 = 1 2 =- , -3y+9y 3 1 2 1 即k 与k 的比值为定值- . AM BN 3 (3)思路一:设直线AM:y=kx+2  ,代入双曲线方程并整理得: 1-4k2  x2-16k2x-16k2-4=01-4k2≠0  , 由于点M为双曲线的左顶点,所以此方程有一根为-2, -16k2-4 24k2+1 由韦达定理得:-2x = ,解得x = A 1-4k2 A  . 1-4k2 24k2+1 因为点A在双曲线的右支上,所以x = A  >0, 1-4k2 1 1 解得k∈- , 2 2  1 1 ,即k ∈- , AM 2 2  ,1 同理可得k ∈-∞,- BN 2 72  1 ∪ ,+∞ 2  , 1 由(2)中结论可知k =-3k ∈-∞,- BN AM 2  1 ∪ ,+∞ 2  , 1 得k ∈-∞,- AM 6  1 ∪ ,+∞ 6  1 1 ,所以k ∈- ,- AM 2 6  1 1 ∪ , 6 2  , 2 2 故w=k2 + k =k2 + -3k AM 3 BN AM 3 AM  =k2 -2k , AM AM 设hx  =x2-2x,其图象对称轴为x=1, 则hx  1 1 =x2-2x在- ,- 2 6  1 1 , , 6 2  上单调递减, 故hx  3 11 ∈- ,- 4 36  13 5 ∪ , 36 4  , 2 3 11 故w=k2 + k 的取值范围为- ,- AM 3 BN 4 36  13 5 ∪ , 36 4  . x2 1 思路二:由于双曲线 -y2=1的渐近线方程为y=± x, 4 2 如图,过点M作两渐近线的平行线l 与l , 1 2 x2 由于点A在双曲线 -y2=1的右支上, 4 所以直线AM介于直线l 与l 之间(含x轴,不含直线l 与l ), 1 2 1 2 1 1 所以k ∈- , AM 2 2  , 同理,过点N作两渐近线的平行线l 与l , 3 4 x2 由于点B在双曲线 -y2=1的右支上, 4 所以直线BN介于直线l 与l 之间(不含x轴,不含直线l 与l ), 3 4 3 4 1 所以k ∈-∞,- BN 2  1 ∪ ,+∞ 2  . 1 由(2)中结论可知k =-3k ∈-∞,- BN AM 2  1 ∪ ,+∞ 2  , 1 得k ∈-∞,- AM 6  1 ∪ ,+∞ 6  1 1 ,所以k ∈- ,- AM 2 6  1 1 ∪ , 6 2  , 2 2 故w=k2 + k =k2 + -3k AM 3 BN AM 3 AM  3 11 =k2 -2k ∈- ,- AM AM 4 36  13 5 ∪ , 36 4  . 【点睛】本题的解题关键是理解题目定义,求出双曲线方程,根据定点位置合理设出直线的方程形式,再利用 直线与双曲线的位置关系得到韦达定理,然后利用斜率公式代入消元,即可判断斜率的比值是否为定值,注 意非对称韦达的使用技巧,第三问,由第二问较容易得到函数关系式,难点是准确找到斜率k 的取值范围, AM 从而得到精确的ω的范围. x2 y2 3 (2024·浙江宁波·高三期末)已知椭圆C: + =1(a>0,b>0)的左、右焦点分别为F、F,离心率 a2 b2 1 2 1 π 为 ,经过点F且倾斜角为θ0<θ< 2 1 2  的直线l与椭圆交于A、B两点(其中点A在x轴上方),△ABF 的 2 周长为8.(1)求椭圆C的标准方程; (2)如图,将平面xOy沿x轴折叠,使y轴正半轴和x轴所确定的半平面(平面AFF)与y轴负半轴和x轴所 1 2 确定的半平面(平面BFF)互相垂直. 1 2 π ①若θ= ,求三棱锥A-BFF 的体积, 3 1 2 π ②若θ= ,异面直线AF和BF 所成角的余弦值; 3 1 2 π ③是否存在θ0<θ< 2 73  15 ,使得△ABF 折叠后的周长为与折叠前的周长之比为 ?若存在,求tanθ的值; 2 16 若不存在,请说明理由. x2 y2 【答案】(1) + =1 4 3 3 13 3 35 (2)① ;② ;③存在,tanθ= 5 28 14 【分析】(1)由椭圆定义求得a,结合离心率求得c,再求出b后即得椭圆标准方程; (2)①求得A,B点坐标,确定折叠后新坐标,然后由体积公式计算体积;②建立如图所示的空间直角坐标系, 用空间向量法求异面直线所成的角;③建立解析中所示空间直角坐标系,设折叠前Ax 1 ,y 1  ,Bx 2 ,y 2  ,折叠 后A,B在新图形中对应点记为A,B,A x 1 ,y 1 ,0  ,B x 2 ,0,-y 2  1 ,由三角形周长求得AB-AB = ,设l 2 1 方程为my=x+1,代入椭圆方程应用韦达定理得y 1 +y 2 ,y 1 y 2 ,用坐标表示AB-AB = 2 变形后代入y 1 +y ,yy 求出m值,从而可得结论. 2 1 2 【详解】(1)由椭圆的定义知:AF 1+AF 2=2a,BF 1+BF 2=2a, 所以△ABF 的周长L=4a=8,所以a=2, 2 1 c 1 又椭圆离心率为 ,所以 = ,所以c=1,b2=a2-c2=3, 2 a 2 由题意,椭圆的焦点在x轴上, x2 y2 所以椭圆的标准方程为 + =1; 4 3 (2)①由直线l:y-0= 3x+1  x2 y2 与 + =1, 4 3 由   y x2 - + 0 y = 2 = 3 1 (x+1) 得  x y= =0, 3 或   x y= = - - 3 8 5 3 , 4 3 5 所以A0, 3  8 3 (因为点A在x轴上方)以及B- ,- 3 5 5  , 6 1 1 3 AF 1=2,BF 1= 5 ,V= 3 ⋅ 2 BF 1 ‖F 1 F 2sin120°AF 1sin60°= 5 ②O为坐标原点,折叠后原y轴负半轴,原x轴,原y轴正半轴所在直线为x,y,z轴建立空间直角坐标系,则F 10,-1,0 74  ,A0,0, 3  3 8 ,B 3,- ,0 5 5  ,F 20,1,0  ,  F 1 A=0,1, 3   3 13 ,BF =- 3, ,0 2 5 5  .   记异面直线AF和BF 所成角为φ,则cosφ=cos= F  1 A  ⋅B  F  2  = 13 ; 1 2 1 2 FABF 28 1 2 ③设折叠前Ax 1 ,y 1  ,Bx 2 ,y 2  ,折叠后A,B在新图形中对应点记为A,B,A x 1 ,y 1 ,0  ,B x 2 ,0,-y 2  , 15 折叠前△ABF 周长是8,则折叠后△ABF 周长是 , 2 2 2 15 1 由A'F 2+B'F 2+A'B'= 2 ,AF 2+BF 2+AB=8,故AB-A'B'= 2 , 设l方程为my=x+1, my=x+1  由x2 + y2 =1 ,得3m2+4 4 3  y2-6my-9=0, 6m -9 y+y = ,yy = , 1 2 3m2+4 1 2 3m2+4 在折叠后的图形中建立如图所示的空间直角坐标系(原x轴仍然为x轴,原y轴正半轴为y轴,原y轴负半轴 为z轴); A'B'= x 1 -x 2  2+y2 1 +y2 2 ,AB= x 1 -x 2  2+y 1 -y 2  2, 所以AB-A'B'= x 1 -x 2  2+y 1 -y 2  2- x 1 -x 2  1 2+y2+y2= ,(ⅰ) 1 2 2 -2yy 又 1 2 x 1 -x 2  2+y 1 -y 2  2+ x 1 -x 2  1 = , 2+y2+y2 2 1 2 所以 x 1 -x 1  2+y 1 -y 2  2+ x 1 -x 2  2+y2+y2=-4yy ,(ⅱ) 1 1 1 2 由(ⅰ)(ⅱ)可得 x 1 -x 2  2+y 1 -y 2  1 2= -2yy , 4 1 2 因为x 1 -x 2  2+y 1 -y 2  2=1+m2  y 1 -y 2  1 2= -2yy 4 1 2  2 , 所以1+m2  6m  3m2+4   2 36  +  3m2+4  1 18 = + 4 3m2+4  2 , 1+m 即144 3m2+4  2 1 18 = + 4 3m2+4  2 , 12+12m2 1 18 28 所以 = + ,解得m2= , 3m2+4 4 3m2+4 45 π 1 3 35 因为0<θ< ,所以tanθ= = . 2 m 14 x2 y2 x2+4x y2 4 (2024·高三·期末)已知椭圆C: + =1的左焦点为F,P为曲线E: + =0上的动点, 25 9 25 9 且点P不在x轴上,直线FP交C于A,B两点. (1)证明:曲线E为椭圆,并求其离心率; (2)证明:P为线段AB的中点;(3)设过点A,B且与AB垂直的直线与C的另一个交点分别为M,N,求△PMN面积的取值范围. 4 【答案】(1)证明见解析, 5 (2)证明见解析 72 (3)0, 5 75  x+2 【分析】(1)整理得到  2 y2 + =1,可以看出曲线E为椭圆,并求出离心率; 4 36 25 9 (2)设AB的中点为H,利用点差法得到k k =- ,设Pm,n OH AB 25  n2 9 ,得到k k = =- ,故P,H重 OP AB m2+4m 25 合,P为线段AB的中点; 1 (3)设直角梯形ABNM的面积为S,得到S = S,设直线AB的方程为x=-4+ky,联立椭圆方程,求出 △PMN 2 1620001+k2 两根之和,两根之积,得到AB,并求出AM,BN,表达出S=  2 1+k2 25k2+9  25+9k2  144 ,得到S∈0, 2 5  , 得到答案. x2+4x y2 x+2 【详解】(1)曲线E: + =0,整理得 25 9  2-4 y2 + =0, 25 9 x+2  2 y2 4 x+2 + = ,即 25 9 25  2 y2 + =1, 4 36 25 x2 y2 故曲线E可由 + =1向左平移2个单位得到,故为椭圆, 4 36 25 8 其中a=2,c= 4- 36 = 8 ,离心率为 c = 5 = 4 ; 25 5 a 2 5 (2)由题意得F- 25-9,0  ,即F-4,0  , 设Ax 1 ,y 1  ,Bx 2 ,y 2  ,则 9x2 1 +25y2 1 =225 ,两式相减得  9x2+25y2=225 2 2 9x 1 +x 2  x 1 -x 2  =-25y 1 +y 2  y 1 -y 2  , 因为点P不在x轴上,故直线FP的斜率存在且不为0, y+y y-y 9 故x≠x ,x+x ≠0,所以 1 2 ⋅ 1 2 =- , 1 2 1 2 x+x x-x 25 1 2 1 2 x+x y+y 设AB的中点为H,则H 1 2, 1 2 2 2  , y+y y 1 +y 2 = 1 2 2 =k , y 1 -y 2 =k,故k k =- 9 , x+x x+x OH x-x l OH AB 25 1 2 1 2 1 2 2 设Pm,n  m2+4m n2 ,则 + =0, 25 9 n n 则k = ,又k =k = , OP m AB FP m+4 n n n2 9 则k k = ⋅ = =- , OP AB m m+4 m2+4m 25 故k =k ,而直线AB不过原点,且H,P在直线AB上, OH OP 即P,H重合,P为线段AB的中点; (3)由题意得四边形ABNM为直角梯形,设直角梯形ABNM的面积为S,又P为AB的中点, 1 1 1 所以S +S = AM⋅AP+ BN⋅BP= AM+BN △AMP △BNP 2 2 2  1 1 ⋅AP= S,则S = S, 2 △PMN 2 设直线AB的方程为x=-4+ky,与9x2+25y2=225联立得:25+9k2  y2-72ky-81=0,设Ax 1 ,y 1 76  ,Bx 2 ,y 2  72k -81 ,则y+y = ,yy = , 1 2 25+9k2 1 2 25+9k2 则AB= 1+k2 y 1 +y 2  72k 2-4yy = 1+k2  1 2 25+9k2  2 -81 -4⋅ 25+9k2 90 1+k2 901+k2 = 1+k2 = 25+9k2  , 25+9k2 直线AM方程为y-y 1 =-kx-x 1  ,联立9x2+25y2=225得:9x2+25 y 1 -kx-x 1    2=225, 即25k2+9  x2-50ky 1 +50k2x 1  x+25y2 1 -2ky 1 x 1 +k2x2 1  -225=0, 设Mx 3 ,y 3  50ky+50k2x 50ky+50k2x ,由图形可得x >x ,则x+x = 1 1,故x = 1 1 -x , 3 1 1 3 25k2+9 3 25k2+9 1 故AM= 1+k2 x 3 -x 1  50ky+50k2x = 1+k2⋅ 1 1 -2x 25k2+9 1  50ky-18x = 1+k2⋅ 1 1, 25k2+9 50ky -18x 同理可得BN= 1+k2 2 2, 25k2+9 50ky-18x 50ky -18x 故AM+BN= 1+k2 1 1 + 1+k2 2 2 25k2+9 25k2+9 = 1+k2 50ky 1 +y 2  -18x 1 +x 2     25k2+9  , 又x 1 +x 2 =-8+ky 1 +y 2  72k2 -200 =-8+ = , 25+9k2 25+9k2 50k⋅ 72k -18⋅ -200 故AM+BN= 1+k2 25+9k2 25+9k2  25k2+9  3600k2+3600 = 1+k2 25k2+9  25+9k2  , 1 901+k2 故S= 2  3600k2+3600 1+k2 25+9k2 25k2+9  25+9k2  1620001+k2 =  2 1+k2 25k2+9  25+9k2  , 2 由于分母最高次为6次,分子最高次为5次,且k2>0恒成立, 故随着k2的增大,S趋向于0, 144 144 当k=0时,S= ,故S∈0, 5 5  , 1 72 则S = S∈0, △PMN 2 5  . 【点睛】结论点睛:圆锥曲线中点弦相关结论及其推广: x2 y2 椭圆 + =1与直线相交于A,B两点,弦AB的中点为M,其中原点为O, a2 b2 b2 则k ⋅k =- , AB OM a2 x2 y2 推广:已知椭圆 a2 + b2 =1的两顶点分别为A 1-a,0  ,A 2a,0  ,则椭圆上一点P(除A,A 两点),满足k ⋅ 1 2 A1P b2 k =- ; A2P a2 x2 y2 双曲线 - =1与直线相交于A,B两点,弦AB的中点为M,其中原点为O, a2 b2 b2 则k ⋅k = , AB OM a2 x2 y2 推广:已知双曲线 a2 - b2 =1的两顶点分别为A 1-a,0  ,A 2a,0  ,则双曲线上一点P(除A,A 两点),满足 1 2 b2 k ⋅k = ; A1P A2P a2 【题型21九省联考类19题】a a 1 (2024·浙江温州·高三)设数阵A = 11 12 0 a a 21 22 77  ,其中a ,a ,a ,a ∈1,2,3,4,5,6 11 12 21 22  .设S=e,e ,⋯,e 1 2 l  ⊆ 1,2,3,4,5,6  ,其中e 1(不妨t >t) 1 1 2 2 1 1 2 2 1 t-1 t 2 1 1 令px  =xlnx,p x  =1+lnx⇒px  1 在0, e  1 递减,在 ,+∞ e  1 递增,故1>t > >t>0; 2 e 1 令ht  =lnt 1 +t 2  =lnt+1  tlnt - , t-1 h't  1 = t-1  2t-1 lnt- 2     t+1  2t-1 ,令m(t)=lnt-  (t>1), t+1 t-1 则m(t)=  2 ,当t>1时,m(t)>0恒成立,故m(t)在(1,+∞)上单调递增, t(t+1) 2t-1 可得m(t)>m(1)=0,即lnt-  >0, t+1 故有h t  1 = t-1  2t-1 lnt- 2     t+1  >0, 则ht  在1,+∞  递增, 又limht t→1  =ln2-1,limht t→+∞  =0,故lnt 1 +t 2  ∈ln2-1,0  , 2 故 3x + 3x =t+t ∈ ,1 1 2 1 2 e  . 【点睛】关键点点睛:本题考查求导数新定义,解题关键是将给定式子合理转化为一元函数,然后利用极限方 法求得关键函数值域,最终即可求解. 2 (2024· 江苏省四校联合·高三模拟)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用.设 AC BD A,B,C,D是直线l上互异且非无穷远的四点,则称 ⋅ (分式中各项均为有向线段长度,例如AB= BC AD -BA)为A,B,C,D四点的交比,记为(A,B;C,D). 1 (1)证明:1-(D,B;C,A)= ; (B,A;C,D) (2)若l ,l ,l ,l 为平面上过定点P且互异的四条直线,L ,L 为不过点P且互异的两条直线,L 与l ,l ,l , 1 2 3 4 1 2 1 1 2 3 l 的交点分别为A ,B ,C ,D ,L 与l ,l ,l ,l 的交点分别为A ,B ,C ,D ,证明:(A,B;C,D)=(A ,B ; 4 1 1 1 1 2 1 2 3 4 2 2 2 2 1 1 1 1 2 2 C ,D ); 2 2 (3)已知第(2)问的逆命题成立,证明:若△EFG与△EFG的对应边不平行,对应顶点的连线交于同一点,则△EFG与△EFG对应边的交点在一条直线上. 【答案】(1)证明见解析 (2)证明见解析 (3)证明见解析 【分析】(1)根据题干所给交比的定义即可证; (2)把交比转化成面积之比,在利用面积公式把面积之比转化为边之比; (3)把三点共线问题转化为其中一个点在另外两个点所构成的直线上.再利用第(2)问的结论得到两组交比 相等,根据逆命题也成立即可证明三点共线. DC⋅BA BC⋅AD+DC⋅BA BC⋅(AC+CD)+CD⋅AB 【详解】(1)1-(D,B;C,A)=1- = = BC⋅DA BC⋅AD BC⋅AD BC⋅AC+BC⋅CD+CD⋅AB BC⋅AC+AC⋅CD AC⋅BD 1 = = = = ; BC⋅AD BC⋅AD BC⋅AD (B,A;C,D) (2)A 1 ,B 1 ;C 1 ,D 1 80  AC⋅BD S ⋅S = 1 1 1 1 = △PA1C1 △PB1D1 BC⋅AD S ⋅S 1 1 1 1 △PB1C1 △PA1D1 = 2 1 ⋅PA 1 ⋅PC 1 ⋅sin∠A 1 PC 1 ⋅ 2 1 ⋅PB 1 ⋅PD 1 ⋅sin∠B 1 PD 1 = sin∠A 1 PC 1 ⋅sin∠B 1 PD 1 2 1 ⋅PB 1 ⋅PC 1 ⋅sin∠B 1 PC 1 ⋅ 2 1 ⋅PA 1 ⋅PD 1 ⋅sin∠A 1 PD 1 sin∠B 1 PC 1 ⋅sin∠A 1 PD 1 sin∠A PC ⋅sin∠B PD S ⋅S A C ⋅B D = sin∠B 2 PC 2 ⋅sin∠A 2 PD 2 = S △PA2C2 ⋅S △PB2D2 == B 2 C 2 ⋅A 2 D 2 =A 2 ,B 2 ;C 2 ,D 2 2 2 2 2 △PB2C2 △PA2D2 2 2 2 2  ; (3)设EF与EF交于X,FG与FG交于Y,EG与EG交于Z, 连接XY,FF与XY交于L,EE与XY交于M,GG与XY交于N, 欲证X,Y,Z三点共线,只需证Z在直线XY上. 考虑线束XP,XE,XM,XE,由第(2)问知(P,F;L,F)=(P,E;M,E), 再考虑线束YP,YF,YL,YF,由第(2)问知(P,F;L,F)=(P,G;N,G), 从而得到(P,E;M,E)=(P,G;N,G), 于是由第(2)问的逆命题知,EG,MN,EG交于一点,即为点Z, 从而MN过点Z,故Z在直线XY上,X,Y,Z三点共线. 【点睛】思路点睛:本题考查射影几何中交比的性质,属新定义题型,难度较大. 第一问直接根据交比的定义证明即可; 第二问首先要理解交比的本质就是两组边比值的乘积,而边的比值可以根据图形(高相同)转化为面积之比, 而面积之比又可以通过面积公式转化为边的比值,从而使得问题得证.其核心思想是利用三角形面积计算的 两个公式进行转化;第三问需要根据第二问的结论以及其逆命题是真命题来证明,第二问是由线共点导出交比相等,第三问是由 交比相等导出线共点,所以要想证明第三问,必须先导出交比相等,而使用第二问的结论恰好可以导出两组 交比相等,进而根据传递性得到想要证的一组交比相等,从而证明出三线共点,进而再说明三点共线. a 1,1 a 1,2 ⋯ a 1,m  a a ⋯ a 3 (2024· 江苏南通·高三模拟)已知A =  2,1 2,2 2,m m  ⋮ ⋮ ⋱ ⋮  a a ⋯ a m,1 m,2 m,m 81  (m≥2)是m2个正整数组成的m行m 列的数表,当1≤i0. 所以必存在某个k既是横向有向线段的起点,又是纵向有向线段的终点, 即存在1