当前位置:首页>文档>福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)

福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)

  • 2026-02-18 04:41:27 2026-02-18 04:41:27

文档预览

福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷_2024年5月_01按日期_1号_2024届福建省福州市高三下学期4月末质量检测(三模)

文档信息

文档格式
pdf
文档大小
2.025 MB
文档页数
13 页
上传时间
2026-02-18 04:41:27

文档内容

{{##{{QQQQAABBJIYYAC8U5oggCigwQwIIBTAAACRJ5hqCRQUQGG0gCCgggEQQskIABhELAKAoCEoRGRhCAHAqIIAARALBiJyNAINBAIAB=A}A#}=}#}{{##{{QQQQAABBJIYYAC8U5oggCigwQwIIBTAAACRJ5hqCRQUQGG0gCCgggEQQskIABhELAKAoCEoRGRhCAHAqIIAARALBiJyNAINBAIAB=A}A#}=}#}{{##{{QQQQAABBJIYYAC8U5oggCigwQwIIBTAAACRJ5hqCRQUQGG0gCCgggEQQskIABhELAKAoCEoRGRhCAHAqIIAARALBiJyNAINBAIAB=A}A#}=}#}{{##{{QQQQAABBJIYYAC8U5oggCigwQwIIBTAAACRJ5hqCRQUQGG0gCCgggEQQskIABhELAKAoCEoRGRhCAHAqIIAARALBiJyNAINBAIAB=A}A#}=}#}2023~2024 学年福州市高三年级 4 月份质量检测 参考答案与评分细则 一、选择题:本大题考查基础知识和基本运算.每小题5分,满分40分. 1.D 2.C 3 .A 4.C 5.D 6 .B 7.B 8.A 二、选择题:本大题考查基础知识和基本运算.每小题 6 分,满分 18 分.全部 选对的得6分,部分选对的得部分分,有选错的得 0分. 9.ABC 10.BC 11 .ACD 三、填空题:本大题考查基础知识和基本运算.每小题5分,满分15分. 12.- 2 13 .8 14.6,22 四、解答题:本大题共 5 小题,共 77 分.解答应写出文字说明、证明过程或演 算步骤. 15. 【考查意图】本小题主要考查递推数列与数列求和等基础知识,考查运算求解能力、推 理论证能力等;考查分类与整合、化归与转化等思想方法;考查数学运算、逻辑推理等核心 素养;体现基础性和综合性.满分13分. 解:(1)因为aan=n +2, 2 ,所以aa- =n 2 ,···································1分 n n- 1 … n n- 1 当n 2时,aaa=a-(a)a()a( +-++a- ) + L , … nnnn n -- 11221 - 1 所以an=22n2+4-++2 + L ,·························································3分 n n(22+)n 所以a = ,n 2,所以a =nn2 +n , 2, ··································4分 n 2 … n … 又因为a =2,···············································································5分 1 所以ann=+n2 Î , N*.······································································6分 n (2)由(1)可知ann=n+n=2+ nÎ (1), N*,·············································7分 n 111 1 所以 == - ,····························································9分 annn ( n+1 ) +1 n 111 1 所以S =+++ +L n 12´´- 23(1)(1) + nnn n 111111 1 =-1 +-++- + - L ,·····································11分 2231 nn- n1 n + 1 所以S =1- ,·········································································12分 n n+1 又因为n 1,所以S <1.·································································································13分 … n 参考答案 第 1 页 共9页 {{##{{QQQQAABBJIYYAC8U5oggCigwQwIIBTAAACRJ5hqCRQUQGG0gCCgggEQQskIABhELAKAoCEoRGRhCAHAqIIAARALBiJyNAINBAIAB=A}A#}=}#}16.【考查意图】本小题主要考查正态分布、全概率公式、条件概率等基础知识,考查数学 建模能力、逻辑思维能力和运算求解能力等,考查分类与整合思想、概率与统计思想等,考 查数学建模、数据分析、数学运算等核心素养,体现基础性、综合性和应用性.满分15分. 解:(1)依题意得,m=0,0s.2= ,···························································1分 所以零件为合格品的概率为PX(0-==, m n = . m n 5´ 1 5 参考答案 第 3 页 共9页 {{##{{QQQQAABBJIYYAC8U5oggCigwQwIIBTAAACRJ5hqCRQUQGG0gCCgggEQQskIABhELAKAoCEoRGRhCAHAqIIAARALBiJyNAINBAIAB=A}A#}=}#}2 5 所以平面DBP与平面BPA夹角的余弦值为 .····································15分 5 解法二:(1)证明:取BP的中点Q,连接GQE, Q . ·····1分 A F D 因为G,H 分别为线段APE, F 的中点, H G 1 所以GQ∥AB ,GQA=B ,····························2分 2 B E 又因为AB∥EFAB,EF = , C Q P GQ∥HEGQ,HE= 所以 ,·································3分 所以四边形GQEH 是平行四边形,······················································4分 所以GHQ∥E ,··············································································5分 又因为GHBË C面EQEBC,EÌ 面 , 所以GHB∥C面E .············································································7分 (2)同解法一.····················································································15分 解法三:(1)证明:取AB的中点I ,连接GIH, I .········1分 A F D 因为G,H 分别为线段APE, F 的中点, I H 所以GIB∥PHIE, B∥ , G 又因为GIBËC面EBPBC,E Ì 面 , B E C 所以GIB∥C面E .············································3分 P 因为HIBË C面EBEBC,E Ì 面 , 所以HIB∥C面E .············································································5分 又因为GIHIIIGIG=ÌIH,HIGIH面 Ì , 面 , 所以面GIHB∥C面E ,·····································································6分 又因为GHGÌ IH面 , 所以GHB∥C面E .············································································7分 (2)同解法一.····················································································15分 18.【考查意图】本小题主要考查圆、椭圆的标准方程及简单几何性质,直线与椭圆的位置 关系等基础知识,考査直观想象能力、逻辑推理能力、运算求解能力等,考查数形结合思想、 化归与转化思想、分类与整合思想等,考査直观想象、逻辑推理、数学运算等核心素养,体 现基础性、综合性与创新性.满分17分. 解法一:(1)依题意,bc22+ a2= .··························································1分 参考答案 第 4 页 共9页 {{##{{QQQQAABBJIYYAC8U5oggCigwQwIIBTAAACRJ5hqCRQUQGG0gCCgggEQQskIABhELAKAoCEoRGRhCAHAqIIAARALBiJyNAINBAIAB=A}A#}=}#}x 2 y 2 设Px(, y) ,则 0 + 0 =1,-c,所以a> x , >x ,所以|PFa|= -x ,d = - x a 0 c 0 2 a 0 c 0 c a- x 所以 |PF 2 | = a 0 = c ,即 |PF 2 | 为定值,且这个定值为 c . ··················4分 d a2 a d a - x c 0 x y (2)(ⅰ)依题意,G(, 0 ) 0 , 3 3 x 设直线IG与x轴交于点C,因为IG⊥x轴,所以C(,00) ,·······················5分 3 x x 2 所以|||F|(C)(FC-=c+c )-- =0 x 0 ,··········································6分 12 33 3 0 因为△PF F 的内切圆与x轴切于点C, 1 2 2 所以|||P|||F|PF-=F- |CFC= x ,·················································7分 1212 0 3 又因为|||P|F2PF+ a= , 1 2 x y 解得|PF |=a- 0 ,·········································· 8分 2 3 P c 由(1)得|PFa|= -x , 2 a 0 G I 所以ax-= c -a x 0 , F1 O C F2 x a 0 3 c 1 所以椭圆E的离心率e= = .·························10分 a 3 c 1 (ⅱ)由2a=6,得a=3,又 = ,所以c=1,ba22=- c2= 8, a 3 x2 y2 所以椭圆E的方程为 + =1.······················································11分 9 8 根据椭圆对称性,不妨设点P在第一象限或y轴正半轴上,即0 x <3,02< y2 , „ 0 0„ 又F(1- ,0) ,F (1,0), 1 2 y 所以直线PF 的方程为y= 0 (1x)+ , 1 x +1 0 x y (3x) + 设直线IG与PF 交于点D,因为x = 0 ,所以y = 0 0 , 1 D 3 D 3(1x) + 0 △F CD的面积S 与△PF F 的面积S之比为 1 1 1 2 1 xy x (3) + (1)00+ 0 ´ S 233(1)(3) x + x + 2 1 = 0 = 0 ,················································13分 S 1 ´ 2´ y 18(1x) 0 + 2 0 (3x)+ 2 (3x)+(1) x- 令 f(x)= (0 x<3),则 f ¢ (x)= , 18(1x)+ „ 18(x+1)2 参考答案 第 5 页 共9页 {{##{{QQQQAABBJIYYAC8U5oggCigwQwIIBTAAACRJ5hqCRQUQGG0gCCgggEQQskIABhELAKAoCEoRGRhCAHAqIIAARALBiJyNAINBAIAB=A}A#}=}#}当xÎ [0,1), f ¢ ()x <0 ,当xÎ (1,3), f ¢ ()x >0 , 所以函数 f(x)在[0,1)单调递减,在(1,3)单调递增. 1 4 1 又因为 f(0)= , f(1)= , f(3)= , 2 9 2 4 1 所以 f(x)的值域是[, ] , 9 2 4 S 1 所以 1 ,··········································································15分 „ „ 9 S 2 4 S 所以 1 1,·······································································16分 5„ S - S „ 1 根据对称性, 4 5 △PF F 被直线IG分成两个部分的图形面积之比的取值范围是[, ] .········17分 1 2 5 4 解法二:(1)同解法一···········································································4分 x y (2)(ⅰ)依题意,G(, 0 ) 0 , 3 3 x 设直线IG与x轴交于点C,因为IG⊥x轴,所以C(,00) ,·······················5分 3 x x 2 所以|||F|(C)(FC-=c+c )-- =0 x 0 ,··········································6分 12 33 3 0 因为△PF F 的内切圆与x轴切于点C, 1 2 2 所以|||P|||F|PF-=F- |CFC= x ,·················································7分 1212 0 3 ì x ï ||PF =a+, 0 ï 1 3 又因为|||P|F2PF+ a= ,得í ···········································8分 1 2 ï x ||PF =a.- 0 ïî 2 3 ì x ï ()xcy++=2a+ 2 , 0 所以 ï í 0 0 3 两式平方后取差,得4cxax= 4 对任意x 成立, ï x 0 3 0 0 ()xcy-+= 2-a 2 , 0 ïî 0 0 3 c 1 所以椭圆E的离心率e= = .························································10分 a 3 (ⅱ)同解法一···················································································17分 解法三:(1)同解法一···········································································4分 x y x (2)(ⅰ)依题意,G(, 0 ) 0 ,因为IG⊥x轴,设点I坐标为(, 0) t .··········5分 3 3 3 y 可求直线PF方程为yx= c 0 ( + ), 1 x +c 0 x yc(tx)(0 +c- ) + 0 3 0 则点I到直线PF的距离 =|t|,·································6分 1 yx2 +(c + )2 0 0 æ x ö 2 ( ) 即ç yc(tx)(c0)t(y+x-+=+c) + ÷ 22 2 ,化简得 è 0003 0 ø x x yttc2x+c+y2+()-+()0() c= 0 0 2 ,① 00 30 3 同理,由点I到直线PF 的距离等于|t|,可得 2 参考答案 第 6 页 共9页 {{##{{QQQQAABBJIYYAC8U5oggCigwQwIIBTAAACRJ5hqCRQUQGG0gCCgggEQQskIABhELAKAoCEoRGRhCAHAqIIAARALBiJyNAINBAIAB=A}A#}=}#}x x yttc2x+c----y2()(=)0() c 0 0 2 ,②············································7分 00 30 3 8 4 y 将式①- 式②,得2tc×x=ycx × ,则t = 0 .·····································8分 3 00 03 4 y 将t = 0 代入式①,得 4 yx2 1 x 00+++(-+)()() c=xc0 0 c 2 , 1623 0 3 x2 y2 化简得 0 + 0 =1, 9c2 8c2 得9c2 =a2, c 1 所以椭圆E的离心率e= = .························································10分 a 3 (ⅱ)同解法一···················································································17分 19.【考查意图】本小题主要考查集合、导数、不等式等基础知识,考查逻辑推理能力、直 观想象能力、运算求解能力和创新能力等,考查函数与方程思想、化归与转化思想、分类与 整合思想、数形结合思想等,考查数学抽象、逻辑推理、直观想象、数学运算等核心素养, 体现基础性、 综合性与创新性.满分17分. 解:(1)依题意,因为lx( )ÎL , 0(), fx x Î R 所以"Î-+xxxkRx, + 2 1,且 x R,-+=xx2kx + 1,····················1分 „  0  00 0 令f()x(x1k=)-+x- 12 - ,D=- ( k- 1 )2 4, 则f()x 0 ,且f(x )=0, „ 0  ì D 0, 所以í „ 所以D= 0, ···································································3分 î D 0,  … 即 ( k-- 1=) 42 0 , 解得k =3或- 1. ··············································································4分 (2)(ⅰ)先证必要性. ( ) 若直线yl=x ( ) 是曲线yg= x ( ) 的切线,设切点为 x ,ex0 +1 , 0 ( ) 因为g¢()x =e x,所以切线方程为yx-+=ex1x0e( - )x0 , 0 即lx ( x )=+e-(x01x)e +1 x0 (*).························································5分 0 一方面,gx ( l x )= ( ) ,所以$Î xgxlRx,(=)( ) ,································6分 0 0 00 0 参考答案 第 7 页 共9页 {{##{{QQQQAABBJIYYAC8U5oggCigwQwIIBTAAACRJ5hqCRQUQGG0gCCgggEQQskIABhELAKAoCEoRGRhCAHAqIIAARALBiJyNAINBAIAB=A}A#}=}#}另一方面,令Gx ( gx ) l=xx-=-- ( - ) x ( ) eex(1)ex0 x0,则G ( x )=0, 0 0 因为G ¢ ( x )=ex - ex0, 所以当x< x 时,G ¢ ( x )<0,G ( x ) 在 (¥- ,x ) 单调递减, 0 0 当x>x 时,G ¢ ( x )>0,G ( x ) 在 ( x ,+¥ ) 单调递增, 0 0 所以Gx ( G ) x ( )=0,所以gx ( l ) x ( ) .··············································7分 … 0 … 即" ÎxgxlRx,()( ) , … 所以lx ( )ÎT ,即l(x)是函数g(x)在R上的“最佳下界线”.···············8分 gx(),x Î R 再证充分性. 若l(x)是函数g(x)在R上的“最佳下界线”,不妨设lx(kx)=b + , 由“最佳下界线”的定义," ÎxgxlR,x ( ) ( ) ,且$Î xgxlRx, =( ) ( ) ,····9分 … 00 0 令Hx ( gx ) lx=k-=x+(- b )- ( ) ex 1 , 则H ( x ) 0且H ( x )=0,所以H ( x ) =0. ·········································10分 … 0 min 因为Hx ¢ ( )=exk- , ①若k 0,则H ¢ ( x ) 0,所以H ( x ) 在R上单调递增, „ … 所以$ x< x ,使得Hx ( H ) x< ( )=0,故k 0不符合题意.·····················11分 1 0 1 0 „ ②若k >0,令H ¢ ( x )=0,得x=lnk, 当x¥Î- ( ,lnk ) 时,H ¢ ( x )<0,得H ( x ) 在 (¥- ,lnk ) 单调递减, 当xÎ+¥( lnk, ) 时,H ( x )>0,得H ( x ) 在 ( lnk,+¥ ) 单调递增, 所以,当且仅当x=lnk时,H ( x ) 取得最小值H ( lnk ) .····························12分 又由H ( x ) 在x 处取得最小值,H ( x ) =0, 0 min ì x =lnk, 所以í 0 ···········································································13分 î H(ln)k0,= 即 ï í ì k =ex0, 解得k =ex 0 ,b=-( 1e x )+1x0 ,····························14分 ïî e1x 00+,-- =kx b 0 0 所以lx ( x )=+e-(x01x)e +1 x0 , 0 参考答案 第 8 页 共9页 {{##{{QQQQAABBJIYYAC8U5oggCigwQwIIBTAAACRJ5hqCRQUQGG0gCCgggEQQskIABhELAKAoCEoRGRhCAHAqIIAARALBiJyNAINBAIAB=A}A#}=}#}( ) 由(*)式知直线yl=x( )是曲线yg=x( )在点 x ,ex0 +1 处的切线. ············15分 0 综上所述,直线yl=x( )是曲线yg=x( )的一条切线的充要条件是直线yl=x( )是函数 g(x)在R上的“最佳下界线”. (ⅱ)集合L T 元素个数为2个. ············································17分 hx()x,g(1x,)Î+(x¥), I Î R 参考答案 第 9 页 共9页 {{##{{QQQQAABBJIYYAC8U5oggCigwQwIIBTAAACRJ5hqCRQUQGG0gCCgggEQQskIABhELAKAoCEoRGRhCAHAqIIAARALBiJyNAINBAIAB=A}A#}=}#}