当前位置:首页>文档>数学理_2024年4月_024月合集_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-理科数学

数学理_2024年4月_024月合集_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-理科数学

  • 2026-02-16 22:29:43 2026-02-16 21:38:44

文档预览

数学理_2024年4月_024月合集_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-理科数学
数学理_2024年4月_024月合集_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-理科数学
数学理_2024年4月_024月合集_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-理科数学
数学理_2024年4月_024月合集_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-理科数学
数学理_2024年4月_024月合集_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-理科数学
数学理_2024年4月_024月合集_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-理科数学
数学理_2024年4月_024月合集_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-理科数学
数学理_2024年4月_024月合集_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-理科数学
数学理_2024年4月_024月合集_2024届四川省绵阳市高中第三次诊断性考试_四川省绵阳市高中2021级第三次诊断性考试-理科数学

文档信息

文档格式
docx
文档大小
0.386 MB
文档页数
9 页
上传时间
2026-02-16 21:38:44

文档内容

绵阳市高中2021级第三次诊断性考试 理科数学参考答案及评分意见 一、选择题:本大题共12小题,每小题5分,共60分. CBACB DDCBC DA 二、填空题:本大题共4小题,每小题5分,共20分. 13.10 14. 15. 16.2 三、解答题:本大题共6小题,共70分. 17.解:(1)由列联表可计算 ,·······4分 ∴有95%的把握认为参数调试能够改变产品合格率.····························5分 (2)根据题意,设备更新后的合格概率为0.8,淘汰品概率为0.2.········6分 可以认为从生产线中抽出的6件产品是否合格是相互独立的,················8分 设X表示这6件产品中淘汰品的件数,则 ,·······················9分 可得: ·································10分 .······················································12分 18.解:(1)设 的公差为d,则1,1+d,2+2d成等比数列,················1分 ∴ ,解得:d=1或d=−1,·····································3分 而d=−1,不满足 , , 成等比数列, ∴d=1,·······················································································4分 ∴数列 的通项公式 .·······················································5分 (2)令 ,·····························6分 ∴ ,······················7分 两式相减有: , ···················8分 ∴数列 的前n+1项和为 ,即 ,································9分 又 ,所以 ,·························································10分 ∴ ,·····················································11分 数学(理科)评分标准 第 1 页 共 9 页∴ .············································································12分 19.解:(1)过C作CH⊥ 交 于H,············································1分 ∵ 在平面 内的射影落在棱 上, ∴ 平面 ,又 平面 ,···································2分 ∴ ,··············································································3分 又 ,且 ,·····················································4分 ∴ 平面 ;···································································5分 2)∵ ,则 ,·························6分 ( 过C作 交 于 ,连结 , AA 与CC 的距离为 则 , ∵ 1 1 平面 ,则 ,···········································7分 又∵ Rt△CHQ中: ,则 , 在 且 , 又 ∴ 平面 ∴ (1)知: 平面 ,∴ , 又由 ,则四边形ABHQ为矩形, ∴ ∴ , ABBA 的面积为3,则BB=3,············································8分 又四边形 1 1 1 分别以 为 轴、 轴、 轴建立如图所示 空间直角坐标系,设 , , , , ∴ ∴ , ∵ 解得 ,············································9分 B(2,0,0), , , ∴ , , ∴ 的法向量为n , 设平面 1 数学(理科)评分标准 第 2 页 共 9 页∴ ,令 , 则n 1 ,·························10分 的法向量n ,········································11分 易知平面 2 , ∴ ∴平面 与平面 所成锐二面角的余弦值为 .················12分 20.解:(1)离心率 ,则 ,①·······························1分 当x=1, ,则 ,②····························3分 联立①②得: ,···························································4分 故椭圆C方程为: ;·······················································5分 (2)设过F,A,B三点的圆的圆心为Q (0,n), , 又 , 则 ,即 ,·················6分 又 在椭圆 上,故 , 带入上式化简得到: ,③··········································7分 同理,根据 可以得到: ,④ ···················8分 由③④可得: 是方程 的两个根,则 ,·····9分 设直线AB: ,联立方程: , 整理得: ,⑤·················································10分 数学(理科)评分标准 第 3 页 共 9 页故 ,解得: , ∴ ,···············································································11分 ∴直线AB的方程为: .············································12分 数学(理科)评分标准 第 4 页 共 9 页1 1 f(x)=( x2 +x)lnx− x2 −x 21.解:(1)当a=1时, 2 4 , ∴ f' (x)=(x+1)lnx ,则切线斜率k=e+1,······································2分 1 y− e2 =(e+1)(x−e) f(x) 4 ∴曲线 在(e, )处的切线方程: ,···········4分 3 (e+1)x−y− e2 −e=0 4 即: ,························································5分 (2)证明方法一:因为 f' (x)=(x+a)(lnx−lna),·····························6分 由 得到x>a;由 得到 00 g(1)=0 e 而 , , ∴ 在(1,2)上恒成立,即(*)式成立,原命题得证.··············12分 数学(理科)评分标准 第 5 页 共 9 页方法二:因为 f' (x)=(x+a)(lnx−lna),···········································6分 由 得到x>a;由 得到 0a;由 得到0b>0,所以a−b=2, ②·······················································4分 由①②得: a=3,b=1 ;··································································5分 √3−at+√bt=√3−3t+√t=√3√1−t+√t (2) ,·································6分 π √t=sinθ,0≤θ≤ 2 √1−t=cosθ 令 ,则 ,········································7分 π √3√1−t+√t=√3cosθ+sinθ=2sin(θ+ ) ∴ 3 ,··································9分 π 1 θ= t= ∴当 6 时,即 4 时, √3−at+√bt 的最大值为2.·····················10分 数学(理科)评分标准 第 9 页 共 9 页