当前位置:首页>文档>江苏省扬州市2023-2024学年高三上学期11月期中检测数学答案(1)_2023年11月_0211月合集_2024届江苏省扬州市高三上学期11月期中检测_江苏省扬州市2024届高三上学期11月期中检测数学

江苏省扬州市2023-2024学年高三上学期11月期中检测数学答案(1)_2023年11月_0211月合集_2024届江苏省扬州市高三上学期11月期中检测_江苏省扬州市2024届高三上学期11月期中检测数学

  • 2026-02-18 07:58:21 2026-02-18 07:53:27

文档预览

江苏省扬州市2023-2024学年高三上学期11月期中检测数学答案(1)_2023年11月_0211月合集_2024届江苏省扬州市高三上学期11月期中检测_江苏省扬州市2024届高三上学期11月期中检测数学
江苏省扬州市2023-2024学年高三上学期11月期中检测数学答案(1)_2023年11月_0211月合集_2024届江苏省扬州市高三上学期11月期中检测_江苏省扬州市2024届高三上学期11月期中检测数学
江苏省扬州市2023-2024学年高三上学期11月期中检测数学答案(1)_2023年11月_0211月合集_2024届江苏省扬州市高三上学期11月期中检测_江苏省扬州市2024届高三上学期11月期中检测数学
江苏省扬州市2023-2024学年高三上学期11月期中检测数学答案(1)_2023年11月_0211月合集_2024届江苏省扬州市高三上学期11月期中检测_江苏省扬州市2024届高三上学期11月期中检测数学
江苏省扬州市2023-2024学年高三上学期11月期中检测数学答案(1)_2023年11月_0211月合集_2024届江苏省扬州市高三上学期11月期中检测_江苏省扬州市2024届高三上学期11月期中检测数学
江苏省扬州市2023-2024学年高三上学期11月期中检测数学答案(1)_2023年11月_0211月合集_2024届江苏省扬州市高三上学期11月期中检测_江苏省扬州市2024届高三上学期11月期中检测数学

文档信息

文档格式
pdf
文档大小
1.121 MB
文档页数
6 页
上传时间
2026-02-18 07:53:27

文档内容

高三数学参考答案 2023.11 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C A C B A B D C AD AB ACD BD 题号 13 14 15 16 答案 3 第1页(共6页) f ( x ) s in ( 2 x 3 )    2 0 , 4 2 7 17.【答案】(1) 因为 f ( x 1 )  0 , f ( x 2 )  0 ,且 x 1  x 2 的最小值为 2  ,所以 T 2 2   , 则 T   2 ,所以 2,············································································ 2分 T 又 f ( 0 )  2 3 ,所以 4 s in 2 3   , 又 | | 2    ,所以 3    , 所以 f ( x ) 4 s in ( 2 x 3 )    . ················································································· 3分 令 2 2 k 2 x 3 2 2 k            ,解得 5 1 2 k x 1 2 k , k Z ,           所以函数 f(x)的单调递增区间为 5 1 2 k , 1 2 k , k Z .           ··································· 5分 (2) 由题可知 f ( ) 4 s in ( 2 3 ) 1 2 5        3 ,则sin(2 ) , 3 5 因为 ( 1 2 , 2 )     ,所以 2 3 ( 2 , 4 3 )       , 所以 c o s ( 2 3 ) 1 ( 3 5 ) 2 4 5         , ································································· 7分       所以sin2sin[(2 ) ]sin(2 )cos cos(2 )sin 3 3 3 3 3 3  3 5  1 2  (  4 5 )  2 3  3  1 4 0 3 . ·····························································10分 18.【答案】(1) 证明:连接 A B 1 , A 1 B 交于点 E ,连接 A C 1 , A C1 交于点 F ,连接 E F , 则平面ABC 和平面ABC交线为EF, 1 1 1 因为ABCABC 为直三棱柱,所以 1 1 1 A B B 1 A 1 ,ACC A 为平行四边形, 1 1 所以 E 为AB 中点, 1 F 为AC 中点,所以EF BC , ·········································· 4分 1 1 1 又 E F  平面ABC ,BC 平面ABC , 1 1 1 1 1 1 1 1 所以EF 平面ABC ,即l 平面 1 1 1 A 1 B C1 1 . ························································ 6分 (2) 直三棱柱 A B C  A 1 B C1 1 中, B A  B C ,所以BA,BC,BB 两两垂直. 1   以 BA,BC,BB 为单位正交基底,建立如图所示的空间直角坐标系Bxyz, 1 则C(0,1,0),C (0,1,1),A(1,0,1). ···································································· 7分 1 1 {#{QQABRYYAggCoAABAAAhCEwFCCAIQkBGCCCoOwBAIoAAAABFABCA=}#}第2页(共6页) A 1 A x E B z 1 B F C C 1 y 设 Q ( 0 , 0 , t ) ,则 Q C 1  ( 0 ,1 ,1  t ) , C A 1  (1 ,  1 ,1 ) , 所以 c o s  Q C 1 , C A 1   Q Q C C 1 1   C C A A 1 1  1  (1 t  t ) 2  3  3 3 ·····································10分 解得 t  1 2 ,所以线段 B Q 长为 1 2 . ··································································12分 1a 19.【答案】(1) 方法一:因为f (x)是奇函数,所以f (0)=0,即 0,解得a1, ···· 2分 22 2x 1 此时, f(x) , 2x12 f (  x )   2  2  x  x 1   1 2  (  ( 2  2  x  x 1   1 2 ) 2 ) 2 x x   2 1   2 2 x x  1   f ( x ) , 则 f ( x ) 是奇函数. 故 a  1 . ····································································································· 4分 方法二:因为f (x)是奇函数, 所以 f ( x )  f (  x )   2 2 x x  1   a 2   2 2   x x  1   a 2   2 2 x x  1   a 2   1 2   a 2  2 x  1 x  0 , 即 ( a  1 ) ( 2 x  1 )  0 对  x  R 恒成立, 所以a1. ···································································································· 4分 -2x+1 1 1 (2) 由(1)知f (x)= =- + ,则f (x)在R上为减函数, ·························· 6分 2x+1+2 2 2x+1 又f (x)是奇函数, 由 f ( 3 s in c o s ) f ( k c o s 2 ) 0       得: f ( 3 s in c o s ) f ( k c o s 2 ) f ( k c o s 2 )           , 所以 3sincoskcos2, 即 3sincoscos2k在 4 , 0       上有解, ············································· 9分 记 g ( ) 3 s in c o s c o s 2       ,则 g ( ) 2 3 s in 2 1 c o 2 s 2 s in 2 6 1 2                   2  因为  ,0 ,则2   , ,      4  6  3 6    1 所以sin2   1,  ,所以  6  2 g ( ) 3 2 , 1       , 所以  3 2   k 3 ,即k . ··············································································12分 2 {#{QQABRYYAggCoAABAAAhCEwFCCAIQkBGCCCoOwBAIoAAAABFABCA=}#}20.【答案】(1) 提出假设 第3页(共6页) H 0 :该品牌方便面中 C 卡片所占比例与方便面口味无关. 2 ( a b ) ( n c ( a d d ) ( b a c 2 ) c ) ( b d ) 1 5 0 9 ( 5 2 0 5 5 4 5 3 0 1 0 1 2 7 0 5 ) 2 7 5 4 1 8 0 .1 8 6 .6 3 5                   , ··········· 3分 又 P ( 2 0 .0 1 0 ) 6 .6 3 5  ≥  , 所以没有99%的把握认为“该品牌方便面中 C 卡片所占比例与方便面口味有关”. ······ 4分 (2) ①记“小明一次购买3袋该方便面,中奖”为事件A, P ( A )  2 5  2 5  1 5  A 33  1 2 2 4 5 . ·············································································· 8分 ② 记“小明一次购买3袋该方便面,未获得 C 卡”为事件 B . P ( B A )  ( 4 5 ) 3  1 6 2 4 5 , ····················································································10分 P ( B | A )  P P ( B ( A A ) )  1 1  6 4 2 52 1 2 4 5  6 4 1 0 1 . 64 答:①小明中奖的概率为 ;②小明为中奖,未获得 125 C 卡的概率为 6 4 1 0 1 . ·············12分 21.【答案】(1) 由题可知ABc, A C  3 c ,BC2c, 在 △ A B C 中,由余弦定理得 c o s  A B C  B A 2 2   B B C A 2   B C A C 2  c 2  ( 2 2 c  2 ) c   ( 2 c 3 c ) 2  1 2 , 又 A B C ( 0 , )    ,所以 A B C 3    , ································································· 2分 又 D 为 B C 的中点,所以 B D  1 2 B C  c ,则 B D  B A , 所以 △ A B D 为等边三角形,又 A D  1 , 所以AB1, B C  2 , 所以 S △ A B C  1 2  B A  B C  s in  A B C  1 2  1  2  2 3  2 3 . ·········································· 4分 (2) 方法一:由题可知 A B  c , A C  3 c , A D  1 , B D  D C  a 2 , 设ABC2, D A C    , A D B    ,则ADC, 在 △ A B D 中,由正弦定理得 s in A  B A D B  s in A  D A B D c 1 ,即  , sin sin2 在 △ A D C DC AC 中,由正弦定理得  ,即 sinDAC sinADC s a 2 in s in ( 3 c )      , 1 a 所以  ,则 sin2 2 3sin a c o 3 s   ,① ···························································· 6分 在△ABD和 △ A D C 中,由余弦定理得 a a 12 ( )2 c2 12 ( )2 ( 3c)2 2 2 cosADBcosADC   0, a a 2 1 2 1 2 2 所以a2 48c2,② ······················································································ 8分 在△ADC中,由余弦定理得DC2  AD2 AC2 2ADACcosDAC, {#{QQABRYYAggCoAABAAAhCEwFCCAIQkBGCCCoOwBAIoAAAABFABCA=}#}即 第4页(共6页) ( a 2 ) 2 1 2 ( 3 c ) 2 2 1 3 c c o s        ,即 c o s 1 3 c 2 2 3 c 1 4 a 2     ,③ ························10分 将 a 2  8 c 2  4 代入得 c o s c 2 2 3 2 c    ,④ 由①④得 ( a 3 ) 2  ( c 2 2  3 2 c ) 2 ,即 8 c 3 2  4  ( c 2 1  2 c 2 2 ) 2 ,即 9 c 2  ( 2 c 2  1 ) ( c 4  4 c 2  4 ) , 即 2 c 6  7 c 4  5 c 2  4  0 ,即 ( c 2  1 ) ( 2 c 2  1 ) ( c 2  4 )  0 , 因为 c  0 ,所以 c 2  1 ,则 a 2  8 c 2  4  4 ,所以 a  2 . 故BC的长为2. ····························································································12分 B 2 θ A α θ D π - α C 方法二:作  A B C 的角平分线,交 A C 与 M . 设 A B C 2    , D A C    ,则 A B M C B M      , 在 △ A B M 和 △ C B M  AB AM  ,  sinAMB sin 中,由正弦定理可得 BC CM   , sinBMC sin 又AMBBMC,所以 s in A M B s in ( B M C ) s in B M C        , 所以 A B B C  A C M M . A θ M 2θ B D C 由题可知ABc,AC 3c,BC a,所以 A C M M  c a , C M  c 3  a c a . ······················ 7分 在 △ A C D 和 △ B C M 中, C A D C B M      ,ACDBCM , AC BC 所以△ACD∽△BCM ,所以  , CD CM 3c a 则  ,即a2 ac6c2 0,即 a 3ac 2 ca ( a  3 c ) ( a  2 c )  0 , 所以 a   3 c (舍)或 a  2 c . ·············································································· 9分 在 △ A B D 和△ADC中,由余弦定理得 a a 12 ( )2 c2 12 ( )2 ( 3c)2 2 2 cosADBcosADC   0, a a 2 1 2 1 2 2 所以a2 48c2, ························································································ 11分 {#{QQABRYYAggCoAABAAAhCEwFCCAIQkBGCCCoOwBAIoAAAABFABCA=}#}则 第5页(共6页) a 2  4  2 a 2 ,解得 a  2 . 故 B C 的长为2. ····························································································12分 方法三:延长CB到 E ,使 E B  B A ,连接 E A . 由题可知ABc, A C  3 c , B C  a , B D  D C  a 2 , 设 A B C 2    , D A C    ,则 B E A B A E      , 在 △ A C D 和 △ E C A 中, A E C D A C      ,  A C D   E C A , 所以 △ A C D ∽ △ E C A ,所以 A C C D  E A C C ,则 A C 2  C D  E C , ·································· 7分 所以 ( 3 c ) 2  a 2  ( a  c ) , 即 a 2  a c  6 c 2  0 ,即(a3c)(a2c)0, 所以 a   3 c (舍)或 a  2 c . ·············································································· 9分 在△ABD和 △ A D C 中,由余弦定理得 c o s  A D B  c o s  A D C  1 2  2 (  a 2 ) a 2 2   1 c 2  1 2  ( a 2 2 )  2  a 2  ( 1 3 c ) 2  0 , 所以 a 2  4  8 c 2 , ························································································ 11分 则 a 2  4  2 a 2 ,解得 a  2 . 故 B C 的长为2. ····························································································12分 A θ θ θ 2θ E B D C 22.【答案】(1) 因为 f ( x )  x 2  a x  a 2 ln x ( x  0 ) , a2 2x2 axa2 xa2xa 则 fx2xa   , ········································· 1分 x x x 令 f ( x )  0 ,则 x   a 2 或 x  a . 1°若a0,当 x   0 , a  , f   x   0 , f  x  单调递减;当 x   a ,    , f   x   0 , f  x  单调递增. 所以 f(x)  f aa2lna0,解得a1; ···················································· 3分 min 2°若a0,当 x   0 ,  a 2  , f   x   0 , f x 单调递减; 当 x    a 2 ,    , fx0, f  x  单调递增.  a a2 a2  a 3  a 所以 f(x)  f    a2ln 0,即 ln  ,解得 min  2 4 2  2 4  2 a   2 e 34 . 3 综上,a的值为1或2e4. ·············································································· 5分 {#{QQABRYYAggCoAABAAAhCEwFCCAIQkBGCCCoOwBAIoAAAABFABCA=}#}(2) 若 第6页(共6页) a  0 时, f  x   x  x  a 2   a ln x , 当 0  x  m in  a 2 ,1  时, x  a 2  0 ,  a ln x  0 ,则 f  x   0 不满足条件. ··················· 6分 若 a  0 时,由 f  1   1  a 2  0 可得 0  a  1 . ······················································· 8分 下面证明其充分性,即证当0a1时, f  x   x 2  a 2 x  a ln x  0 恒成立. 思路一:关于 a 的函数haxa2 alnxx2,0a1是一段开口向下的抛物线. 只要证  h h  0 1    x  2 x   0 ln ① , x  x 2  0 ② . 其中 ① 式显然成立. 令 ( x ) x 2 x ln x     ,则 ( x ) 2 x 1 1 x 2 x 2 x x 1 ( 2 x 1 ) x ( x 1 )            , 所以当x(0,1)时,(x)0,(x)单调递减;当x(1,)时,(x)0,(x)单调递增. 所以(x)(1)0,②式得证. 所以,当0a1时, f xx2 a2xalnx0恒成立. 综上, a 的取值范围是 [ 0 ,1 ] . ···········································································12分 思路二:令 h  x   x  1  ln x ,则 h   x   1  1 x  x  x 1  0 . 当 x  ( 0 ,1 ) 时, h ( x )  0 , h ( x ) 单调递减;当 x  (1 ,   ) 时, h ( x )  0 ,h(x)单调递增. 所以h(x)h(1)0,则 x  1  ln x . 由 ln x  x  1 ,得 a  [ 0 ,1 ] 时, x 2  a 2 x  a ln x  x 2  a 2 x  a  x  1   x 2   a 2  a  x  a , 又当 a  [ 0 ,1 ] 时,方程x2 (a2 a)xa0的(a2 a)2 4aa[a(a1)2 4]0, 所以 x 2  a 2 x  a ln x  0 对x(0,)恒成立. 所以, a  [ 0 ,1 ] 均满足. 综上, a 的取值范围是 [ 0 ,1 ] . ···········································································12分 {#{QQABRYYAggCoAABAAAhCEwFCCAIQkBGCCCoOwBAIoAAAABFABCA=}#}