当前位置:首页>文档>数学答案_2024-2025高二(7-7月题库)_2024年07月试卷_0726山东省烟台市2023-2024学年高二下学期7月期末考试_山东省烟台市2023-2024学年高二下学期7月期末考试数学Word版含答案

数学答案_2024-2025高二(7-7月题库)_2024年07月试卷_0726山东省烟台市2023-2024学年高二下学期7月期末考试_山东省烟台市2023-2024学年高二下学期7月期末考试数学Word版含答案

  • 2026-02-18 10:44:04 2026-02-18 10:44:04

文档预览

数学答案_2024-2025高二(7-7月题库)_2024年07月试卷_0726山东省烟台市2023-2024学年高二下学期7月期末考试_山东省烟台市2023-2024学年高二下学期7月期末考试数学Word版含答案
数学答案_2024-2025高二(7-7月题库)_2024年07月试卷_0726山东省烟台市2023-2024学年高二下学期7月期末考试_山东省烟台市2023-2024学年高二下学期7月期末考试数学Word版含答案
数学答案_2024-2025高二(7-7月题库)_2024年07月试卷_0726山东省烟台市2023-2024学年高二下学期7月期末考试_山东省烟台市2023-2024学年高二下学期7月期末考试数学Word版含答案
数学答案_2024-2025高二(7-7月题库)_2024年07月试卷_0726山东省烟台市2023-2024学年高二下学期7月期末考试_山东省烟台市2023-2024学年高二下学期7月期末考试数学Word版含答案

文档信息

文档格式
pdf
文档大小
0.350 MB
文档页数
4 页
上传时间
2026-02-18 10:44:04

文档内容

2023~2024 学年度第二学期期末学业水平诊断 高二数学参考答案及评分标准 一、选择题 C C A D B D C A 二、选择题 9. ABD 10.BCD 11.AC 三、填空题 1 4 2 3 12.−80 13.(−∞, ] 14.( )n−1L, L2 e 3 45 四、解答题 15.解:(1)根据已知条件,可得: 获奖 没有获奖 合计 选修阅读课程 8 12 20 不选阅读课程 2 28 30 合计 10 40 50 ······················································ 3分 零假设为H :创新作文比赛获奖与选修阅读课程无关联, 0 根据列联表中数据计算得到, 50×(8×28−2×12)2 25 χ2= = ≈8.333>7.879. ······························· 6分 20×30×10×40 3 根据小概率值α=0.005的独立性检验,推断H 不成立,即认为创新作文比赛获奖与 0 选修阅读课程有关联,此推断犯错误的概率不大于0.005. ···························· 7分 (2)由题意可知X 的可能取值为1,2,3,则 ··································· 8分 C1C2 1 C2C1 7 P(X =1)= 8 2 = ,P(X =2)= 8 2 = , C3 15 C3 15 10 10 C3 7 P(X =3)= 8 = , ········································ 11分 C3 15 10 所以,随机变量X 的分布列为: X 1 2 3 1 7 7 P 1 5 1 5 1 5 1 7 7 12 所以E(X)=1× +2× +3× = . ·························· 13分 15 15 15 5 16.解:(1)当a =−2时, f(x)=(x2 −2x+1)ex,所以 f′(x)=(x2 −1)ex. ········· 1分 设切点为(x ,y ),则y =(x 2 −2x +1)ex 0 ,k =(x2 −1)ex 0, 0 0 0 0 0 0 高二数学答案(第 1 页,共 4 页) {#{QQABRYYQoggoAIBAAAhCAQXKCkOQkACACQgOBEAIMAAAARNABAA=}#}所以,切线方程为y−(x2 −2x +1)ex 0 =(x2 −1)ex 0(x−x ). ························ 3分 0 0 0 0 将(1,0)代入得(x −1)2x =0,解得x =0或x =1. ····························· 5分 0 0 0 0 故过(1,0)的切线方程为y =0或x+ y−1=0. ················································ 7分 (2) f ′(x) =(2x+a)ex +(x2 +ax+1)ex =(x+a+1)(x+1)ex. ····················· 8分 当a = 0时, f ′(x) =(x+1)2ex,恒有 f ′(x)≥ 0,函数 f(x)单调递增. ········· 10分 当a > 0时,−a−1< −1,当x∈(−∞,−a−1),或x∈(−1,+∞)时, f ′(x) > 0,函 数 f(x)单调递增,当x∈(−a−1,−1)时, f ′(x)< 0,函数 f(x)单调递减. ···· 12分 当a <0时,−a−1> −1,当x∈(−∞,−1),或x∈(−a−1,+∞)时, f ′(x) > 0,函数 f(x)单调递增,当x∈(−1,−a−1)时, f ′(x)< 0,函数 f(x)单调递减. ······· 14分 综上,当a = 0时,f(x)在R上单调递增,当a > 0时,f(x)在(−∞,−a−1),(−1,+∞) 上单调递增,在(−a−1,−1)上单调递减,当a <0时,f(x)在(−∞,−1),(−a−1,+∞) 上单调递增,在(−1,−a−1)上单调递减. ······························ 15分 17.解:(1)由题意可知,b −b =a ,即b −1=−1,故b =0. ························ 1分 2 1 2 2 2 由b −b =a ,可得a =1. ······················································ 2分 3 2 3 3 所以数列{a }的公差d =2,所以a =−1+2(n−2)=2n−5. ······················ 3分 n n 由b −b =a ,b −b =a ,,b −b =a , n n−1 n n−1 n−2 n−1 2 1 2 (n−1)(−1+2n−5) 叠加可得 b −b =a +a ++a = , n 1 2 3 n 2 整理可得 b =n2 −4n+4(n≥2);当n=1时,满足上式, n 所以b =n2 −4n+4 ················································································ 5分 n (n−2)2 +5 (2)不妨设a =b (m,n∈N∗),即2m−5=(n−2)2,可得m= , ········ 6分 m n 2 9 当n=2k时,m=2k2 −4k+ ,不合题意, 2 当n=2k−1时,m=2k2 −6k+7=2k(k−3)+7∈N∗, ································ 7分 所以b 在数列{a }中均存在公共项, 2k−1 n 又因为b =b 0,t(x)单增. ················································································ 5分 所以t(x)的极小值即最小值t(1) = 2,又当x→0时,t(x)→+∞,且x→+∞时, 1 1 t(x)→+∞,所以− >2,即− 2. 1 2 1 2 1 2 要证:x >2−x >1,只要证t(x )>t(2−x ). 2 1 2 1 令g(x)=t(x)−t(2−x)(0< x<1). ···························· 8分 x−1 1−x −4(x−1)2 因为g′(x)=t′(x)+t′(2−x)= + = <0. ··········· 10分 x2 (2−x)2 x2(2−x)2 所以g(x)在(0,1)上单调递减,所以g(x)> g(1)=0, 故t(x )>t(2−x ),即x + x > 2. ························· 11分 2 1 1 2 1 由(1)可知,在(0,x )上, f′(x)=a(t(x)+ )<0, f(x)单调递减,在(x ,x ) 1 1 2 a 上, f ′(x) > 0, f(x)单调递增,在(x ,+∞)上, f ′(x)< 0, f(x)单调递减, 2 又因为 f(1) =0,所以 f(x )< f(1) =0, 1 1 1 1 因为− < a <0,所以 < −2,所以ea 0, 1 所以 f(x)在(ea,x )上存在点x ,使得 f(x ) =0, ····························· 13分 1 3 3 1 − 1 同理 f(x ) > f(1) = 0,又− > 2,e a >e2 >1, 2 a 1 1 1 1 − − − − f(e a) = a(e a +1)lne a +e a −1= −2<0, 1 − 所以 f(x)在(x ,e a)上存在点x ,使得 f(x ) =0, ····························· 14分 2 4 4 故 f(x)存在3个零点x ,1,x , 3 4 1 1 1 1 1 1 注意到 f( ) = a( +1)ln + −1= − (a(x+1)lnx+ x−1) = − f(x), · 15分 x x x x x x 1 1 所以x = ,所以x + x = x + > 2. ··································· 16分 3 x 3 4 3 x 4 3 所以x + x + x + x +1>5,即m+n>5. ···································· 17分 1 2 3 4 高二数学答案(第 4 页,共 4 页) {#{QQABRYYQoggoAIBAAAhCAQXKCkOQkACACQgOBEAIMAAAARNABAA=}#}