文档内容
2023~2024 学年度第二学期期末学业水平诊断
高二数学参考答案及评分标准
一、选择题
C C A D B D C A
二、选择题
9. ABD 10.BCD 11.AC
三、填空题
1 4 2 3
12.−80 13.(−∞, ] 14.( )n−1L, L2
e 3 45
四、解答题
15.解:(1)根据已知条件,可得:
获奖 没有获奖 合计
选修阅读课程 8 12 20
不选阅读课程 2 28 30
合计 10 40 50
······················································ 3分
零假设为H :创新作文比赛获奖与选修阅读课程无关联,
0
根据列联表中数据计算得到,
50×(8×28−2×12)2 25
χ2= = ≈8.333>7.879. ······························· 6分
20×30×10×40 3
根据小概率值α=0.005的独立性检验,推断H 不成立,即认为创新作文比赛获奖与
0
选修阅读课程有关联,此推断犯错误的概率不大于0.005. ···························· 7分
(2)由题意可知X 的可能取值为1,2,3,则 ··································· 8分
C1C2 1 C2C1 7
P(X =1)= 8 2 = ,P(X =2)= 8 2 = ,
C3 15 C3 15
10 10
C3 7
P(X =3)= 8 = , ········································ 11分
C3 15
10
所以,随机变量X 的分布列为:
X 1 2 3
1 7 7
P
1 5 1 5 1 5
1 7 7 12
所以E(X)=1× +2× +3× = . ·························· 13分
15 15 15 5
16.解:(1)当a =−2时, f(x)=(x2 −2x+1)ex,所以 f′(x)=(x2 −1)ex. ········· 1分
设切点为(x ,y ),则y =(x 2 −2x +1)ex 0 ,k =(x2 −1)ex 0,
0 0 0 0 0 0
高二数学答案(第 1 页,共 4 页)
{#{QQABRYYQoggoAIBAAAhCAQXKCkOQkACACQgOBEAIMAAAARNABAA=}#}所以,切线方程为y−(x2 −2x +1)ex 0 =(x2 −1)ex 0(x−x ). ························ 3分
0 0 0 0
将(1,0)代入得(x −1)2x =0,解得x =0或x =1. ····························· 5分
0 0 0 0
故过(1,0)的切线方程为y =0或x+ y−1=0. ················································ 7分
(2) f ′(x) =(2x+a)ex +(x2 +ax+1)ex =(x+a+1)(x+1)ex. ····················· 8分
当a = 0时, f ′(x) =(x+1)2ex,恒有 f ′(x)≥ 0,函数 f(x)单调递增. ········· 10分
当a > 0时,−a−1< −1,当x∈(−∞,−a−1),或x∈(−1,+∞)时, f ′(x) > 0,函
数 f(x)单调递增,当x∈(−a−1,−1)时, f ′(x)< 0,函数 f(x)单调递减. ···· 12分
当a <0时,−a−1> −1,当x∈(−∞,−1),或x∈(−a−1,+∞)时, f ′(x) > 0,函数
f(x)单调递增,当x∈(−1,−a−1)时, f ′(x)< 0,函数 f(x)单调递减. ······· 14分
综上,当a = 0时,f(x)在R上单调递增,当a > 0时,f(x)在(−∞,−a−1),(−1,+∞)
上单调递增,在(−a−1,−1)上单调递减,当a <0时,f(x)在(−∞,−1),(−a−1,+∞)
上单调递增,在(−1,−a−1)上单调递减. ······························ 15分
17.解:(1)由题意可知,b −b =a ,即b −1=−1,故b =0. ························ 1分
2 1 2 2 2
由b −b =a ,可得a =1. ······················································ 2分
3 2 3 3
所以数列{a }的公差d =2,所以a =−1+2(n−2)=2n−5. ······················ 3分
n n
由b −b =a ,b −b =a ,,b −b =a ,
n n−1 n n−1 n−2 n−1 2 1 2
(n−1)(−1+2n−5)
叠加可得 b −b =a +a ++a = ,
n 1 2 3 n 2
整理可得 b =n2 −4n+4(n≥2);当n=1时,满足上式,
n
所以b =n2 −4n+4 ················································································ 5分
n
(n−2)2 +5
(2)不妨设a =b (m,n∈N∗),即2m−5=(n−2)2,可得m= , ········ 6分
m n 2
9
当n=2k时,m=2k2 −4k+ ,不合题意,
2
当n=2k−1时,m=2k2 −6k+7=2k(k−3)+7∈N∗, ································ 7分
所以b 在数列{a }中均存在公共项,
2k−1 n
又因为b =b 0,t(x)单增. ················································································ 5分
所以t(x)的极小值即最小值t(1) = 2,又当x→0时,t(x)→+∞,且x→+∞时,
1 1
t(x)→+∞,所以− >2,即− 2.
1 2 1 2 1 2
要证:x >2−x >1,只要证t(x )>t(2−x ).
2 1 2 1
令g(x)=t(x)−t(2−x)(0< x<1). ···························· 8分
x−1 1−x −4(x−1)2
因为g′(x)=t′(x)+t′(2−x)= + = <0. ··········· 10分
x2 (2−x)2 x2(2−x)2
所以g(x)在(0,1)上单调递减,所以g(x)> g(1)=0,
故t(x )>t(2−x ),即x + x > 2. ························· 11分
2 1 1 2
1
由(1)可知,在(0,x )上, f′(x)=a(t(x)+ )<0, f(x)单调递减,在(x ,x )
1 1 2
a
上, f ′(x) > 0, f(x)单调递增,在(x ,+∞)上, f ′(x)< 0, f(x)单调递减,
2
又因为 f(1) =0,所以 f(x )< f(1) =0,
1
1 1 1
因为− < a <0,所以 < −2,所以ea 0,
1
所以 f(x)在(ea,x )上存在点x ,使得 f(x ) =0, ····························· 13分
1 3 3
1 − 1
同理 f(x ) > f(1) = 0,又− > 2,e a >e2 >1,
2
a
1 1 1 1
− − − −
f(e a) = a(e a +1)lne a +e a −1= −2<0,
1
−
所以 f(x)在(x ,e a)上存在点x ,使得 f(x ) =0, ····························· 14分
2 4 4
故 f(x)存在3个零点x ,1,x ,
3 4
1 1 1 1 1 1
注意到 f( ) = a( +1)ln + −1= − (a(x+1)lnx+ x−1) = − f(x), · 15分
x x x x x x
1 1
所以x = ,所以x + x = x + > 2. ··································· 16分
3 x 3 4 3 x
4 3
所以x + x + x + x +1>5,即m+n>5. ···································· 17分
1 2 3 4
高二数学答案(第 4 页,共 4 页)
{#{QQABRYYQoggoAIBAAAhCAQXKCkOQkACACQgOBEAIMAAAARNABAA=}#}