当前位置:首页>文档>吉林地区2023-2024高三一模数学试题参考答案(1)_2023年11月_0211月合集_2024届吉林省吉林市高三上学期第一次模拟考试_吉林省吉林市2024届高三上学期第一次模拟考试数学

吉林地区2023-2024高三一模数学试题参考答案(1)_2023年11月_0211月合集_2024届吉林省吉林市高三上学期第一次模拟考试_吉林省吉林市2024届高三上学期第一次模拟考试数学

  • 2026-02-18 00:45:33 2026-02-18 00:45:33

文档预览

吉林地区2023-2024高三一模数学试题参考答案(1)_2023年11月_0211月合集_2024届吉林省吉林市高三上学期第一次模拟考试_吉林省吉林市2024届高三上学期第一次模拟考试数学
吉林地区2023-2024高三一模数学试题参考答案(1)_2023年11月_0211月合集_2024届吉林省吉林市高三上学期第一次模拟考试_吉林省吉林市2024届高三上学期第一次模拟考试数学
吉林地区2023-2024高三一模数学试题参考答案(1)_2023年11月_0211月合集_2024届吉林省吉林市高三上学期第一次模拟考试_吉林省吉林市2024届高三上学期第一次模拟考试数学
吉林地区2023-2024高三一模数学试题参考答案(1)_2023年11月_0211月合集_2024届吉林省吉林市高三上学期第一次模拟考试_吉林省吉林市2024届高三上学期第一次模拟考试数学
吉林地区2023-2024高三一模数学试题参考答案(1)_2023年11月_0211月合集_2024届吉林省吉林市高三上学期第一次模拟考试_吉林省吉林市2024届高三上学期第一次模拟考试数学
吉林地区2023-2024高三一模数学试题参考答案(1)_2023年11月_0211月合集_2024届吉林省吉林市高三上学期第一次模拟考试_吉林省吉林市2024届高三上学期第一次模拟考试数学
吉林地区2023-2024高三一模数学试题参考答案(1)_2023年11月_0211月合集_2024届吉林省吉林市高三上学期第一次模拟考试_吉林省吉林市2024届高三上学期第一次模拟考试数学
吉林地区2023-2024高三一模数学试题参考答案(1)_2023年11月_0211月合集_2024届吉林省吉林市高三上学期第一次模拟考试_吉林省吉林市2024届高三上学期第一次模拟考试数学

文档信息

文档格式
pdf
文档大小
0.349 MB
文档页数
8 页
上传时间
2026-02-18 00:45:33

文档内容

吉林地区普通高中 2023—2024 学年度高三年级第一次模拟考试 如图2,当函数 y  ax与 y  log x有一个公共点(x ,y )在直线 y  x上,且在该公共点处的 a 0 0  ax 0  x ① 切线为 y  x,所以有 0 ,①代入②消ax 0得x lna  lnax 0 1,ax 0  e,代入 ax 0 lna 1② 0 数学试题参考答案  1 一、单项选择题:本大题共8小题,每小题5分,共40分.   a  ee ②中得 即 y  ax与 y  log x的公共点为(e,e)  x  e a 1 2 3 4 5 6 7 8 0 A C B D A C B C 结合图象得到以下结论: 二、多项选择题:本大题共4小题,共20分.全部选对的得5分,部分选对的得2分,有选错的得0 1 (1)当a  ee时,函数 y  ax与 y  log x的图象无公共点(如图1) 分. a 1 (2)当a  ee时,函数 y  ax与 y  log x的图象有一个公共点(如图2) 9 10 11 12 a 1 BCD ACD BC ABD (3)当1 a  ee时,函数 y  ax与 y  log x的图象有两个公共点(如图3) a (二)当0 a 1时函数图象呈现以下三种情况 三、填空题:本大题共4小题,每小题5分,共20分.其中第15题的第一个空填对得2分,第二 个空填对得3分. 2 13. 5 14. 5 15. 68; 108 16. (1e4,e4 1) (注:或写成1e4  m  e4 1) 图4 图5 图6 7.教学建议:请教师们注意结合向量运算掌握三角形的“四心”问题. 如图5,当函数 y  ax与 y  log x有一个公共点(x ,y )在直线 y  x上,且在该点处有公切 a 0 0 9.教学提示:建议教学中指导学生甄别a范围不同时,指、对函数的位置关系. 线(斜率为1), (一)当a 1时函数图象呈现以下三种情况  ax 0  x ① 1 所以有 0 ,①代入②消ax 0得x lna  lnax 0  1,ax 0  ,代入②中得 ax 0 lna  1② 0 e a  ee  1 1  1 ,即 y  ax与 y  log x的公共点为( ,) x  a e e  0 e 结合图象得到以下结论: (4)当0 a  ee时,函数 y  ax与 y  log x的图象有三个公共点(如图4) a 图1 图2 图3 高三年级第一次模拟考试数学试题参考答案 第 1 页 (共 8 页)(5)当a  ee时,函数 y  ax与 y  log x的图象有一个公共点(如图5) h(e2) 0 h(e2) 0 a   令h(t) t2 mt e4,则h(1) 0 或h(1) 0 (6)当ee  a 1时,函数 y  ax与 y  log a x的图象有一个公共点(如图6)  h(e2) 0  h(e2) 0 故0 m  e4 1或1e4  m  0 15.教学建议:(1)关注《数学课程标准》中分层随机抽样的教学要求. 综上,实数m的取值范围是(1e4,e4 1). (2)学生掌握推导过程. 方法二: 摘自《数学课程标准》: ②分层随机抽样 ()式化为m  t e4 ,令h(t) t e4 (t  0), t t 通过实例,了解分层随机抽样的特点和适用范围,了解分层随机抽样的必要性,掌握各层样本量比例 易知 y  h(t)在(,0),(0,)上单调递增, 分配的方法.结合具体实例,掌握分层随机抽样的样本均值和样本方差. (x2)ex 且h(1)1e4,h(1) e4 1,h(e2) h(e2) 0 16.教学提示:当x  0且x 1时, f(x) , f(2) 0 (x1)2 其图象大致如图: 当0 x  2且x 1时, f(x) 0;当x  2时, f(x) 0. 当0 m  e4 1或1e4  m  0时,满足 故 f(x)在(0,1),(1,2)上单调递减,在(2,)上单调递增, e2  t  1 t  e2  1 或 1  t  e2  1 t  e2 2 2 当x  2时, f(x)取得极小值 f(2) e2, 综上,实数m的取值范围是(1e4,e4 1). 当x 1时, f(x) ;当x 1时, f(x) ;当x  时, f(x) . 由 f(x)解析式可知, f(x)为奇函数.画出 f(x)图象大致如下: 四 、解答题 17.【解析】 令g(x) 0得 f 2(x)mf (x)e4  0,设t  f(x), (Ⅰ) a // b  3sinxcosxcos2 x  0····························································1分 得关于t的方程t2 mt e4  0() 即 cosx( 3sinxcosx) 0   m2 4e4  0恒成立,设()式有两个不等实根t ,t , 1 2 3 当t  e2,t  e2时,即m  0,满足题意, cosx  0或tanx  ························································································3分 1 2 3 e2  t  1 t  e2 当 1 或 1 ,满足题意, x(0,)  t  e2  1 t  e2 2 2 方法一: 高三年级第一次模拟考试数学试题参考答案 第 2 页 (共 8 页)    x  或x  ···································································································5分  f(x)的单调递增区间是[  k,  k](kZ)·················································10分 2 6 3 6 (注:少一个解扣1分,没有角的范围表述扣1分.) (注:单调区间没有写成区间形式扣1分,没有注明k 的范围扣1分.) 方法二: a // b  3sinxcosxcos2 x  0·························································1分 18.【解析】 3 1cos2x  sin2x  0 2 2 1 (Ⅰ)解: f(x) 2 (x  0)·············································································1分 x  1 sin(2x ) ··································································································3分 6 2 所求切线斜率为 f(1) 1,切点为(1,2)··································································3分   11 故所求切线方程为 y(2) (x1),即x y1 0·················································5分 x(0,) 2x ( , ) 6 6 6 (注:将切线方程表示成 y  x1也给分)    5 2x  或2x  (Ⅱ)方法一:分离变量 6 6 6 6 lnx   由 f(x) ax2 2x得a  在(0,)恒成立··························································· 6分 x  或x  ···································································································5分 x2 6 2 (注:少一个解扣1分,没有角的范围表述扣1分.) lnx 令g(x) (x  0),则a  g(x) x2 max 1 1 (Ⅱ) f(x) ab  3sinxcosxcos2 x ················································6分 12lnx 2 2 g(x) ,g( e) 0·················································································8分 x3 3 1  sin2x cos2x 当0 x  e 时,g(x) 0;当x  e 时,g(x) 0 2 2 故g(x)在(0, e)上单调递增,在( e,)上单调递减   sin(2x )······················································································7分 6 1 故当x  e 时,g(x)取最大值 ···········································································11分 2e    令  2k 2x   2k (kZ) 2 6 2 1 1 故a  ,即a的取值范围是[ ,)······································································12分 2e 2e     k x   k························································································9分 3 6 1 (注:表示成a  不扣分) 2e 高三年级第一次模拟考试数学试题参考答案 第 3 页 (共 8 页)方法二:分类讨论 1 g(x) 2ax,h(x) x 由 f(x) ax2 2x得ax2 lnx  0在(0,)恒成立····················································6分 若a  0,当x 1时,ax2  0,lnx  0,g(x) h(x),不合题意;·······························7分 1 2ax2 1 令g(x) ax2 lnx(x  0),则g(x) 2ax  x x 若a  0,g(x) h(x) ①当a  0时,g(x) 0恒成立,g(x)在(0,)上单调递减, 曲线 y  g(x)与曲线 y  h(x)有且只有一个公共点,且在该公共点处的切线相同. 又g(1) a  0,故当x 1时,g(x) 0,不合题意; (或直接由g(2) 4aln2 0,不合题意 设切点坐标为(x , y ) 0 0 或当x 1时,ax2  0,lnx  0,g(x) 0,不合题意)···············································8分 y  ax2  lnx x  e  0 0 0  0 则 1 解得 1  2ax  a  ②当a  0时,令g(x) 0得x  1 ,  0 x 0  2e 2a 1 故当a  时,g(x) h(x) 1 1 2e 令g(x) 0得x  ,令g(x) 0得0 x  , 2a 2a 1 即a的取值范围是[ ,).····················································································· 12分 1 1 2e 故g(x)在(0, )上单调递减,g(x)在( ,)上单调递增 2a 2a (教学建议:1.教师应强调第二问的法三比较适合选填题; 1 1 1 1 故当x  时,g(x)取最小值g( ) ln  0·········································11分 2.在教学中,教师应注意强调 f(x) ln(kx)(k  0)的导函数的相关内容; 2a 2a 2 2a 变式:若x[1,0],xln(12x)(a1)x恒成立,求a的取值范围. 1 1 故a  ,即a的取值范围是[ ,) 2e 2e 19.【解析】 1 综上所述,a的取值范围是[ ,)··········································································12分 2e (Ⅰ)选择① 方法三:数形结合 由已知可得: 由 f(x) ax2 2x得ax2  lnx在(0,)恒成立·························································6分 当n1时,S  a  2························································································1分 1 2 令g(x) ax2,h(x) lnx,则当x  0时,g(x) h(x)恒成立 当n 2且nN时,a  S  S  a a n n n1 n1 n 高三年级第一次模拟考试数学试题参考答案 第 4 页 (共 8 页)a 1 a  2a 即 n1  2····························································································3分 nN  0T 1······································································ 12分 n1 n a 2n1 1 n n (注:若(Ⅰ)选择①,且未讨论a 1的情况,扣2分; a 又 2 1不符合上式 但若(Ⅱ)运算正确,(Ⅱ)问正常赋分.) a 1 关于劣构问题: ···················································································· 5分 2, n1, 劣构问题的常见形式: a   n 2n1,n 2且nN (1)目标界定不明确的结构不良问题; (2)具有多种解法、途径的结构不良问题; 选择② (3)多个类似条件的结构不良问题; S n  a n1 (4)问题条件或数据冗余的结构不良问题; S  S  S ·····································································································1分 (5)不同求解目标的结构不良问题. n n1 n 条件的选择原则: S S n1  2S n 即 S n1  2··························································································3分 (1)应先分析所有条件,优先选择自己会做的、有把握的; n (2)在有把握的前提下,优先选择难度最小的; 又S  a  2 1 1 (3)在选择条件时,要通盘考虑条件对整个问题的影响. {S n }是以2为首项,2为公比的等比数列. 教学建议: S  22n1  2n (nN)····················································································5分 (1)引导学生从知识的习得记忆转向问题的解决、策略的选择,使数学应用在思维层面真正发生; n (2)注重渗透不良结构问题,采用开放式、互动式的教学方式,引导学生关注数学问题情境的变化; (Ⅱ)由(Ⅰ)可知S a  2n,a  2n1 n n1 n2 (3)注重变式训练,提高学生的辨析能力和应变能力. S 2n 1 1 b  n    ···································9分 n (a 1)(a 1) (2n 1)(2n1 1) 2n 1 2n1 1 n1 n2 20.【解析】 T  b b b b n 1 2 3 n (Ⅰ)设Q 型芯片I级品该项指标的第70百分位数为a, 则该指标在80以下的概率为0.55,该指标在90以下的概率为0.8,因此该项指标的第70百分位数 1 1 1 1 1 1 1 (1 )(  )(  )(  ) 3 3 7 7 15 2n 1 2n1 1 为a一定在[80,90)内 1 1 ·································································································11分 0.002100.005100.023100.025100.025(a80) 0.7 2n1 1 (也可以用0.02100.025(90a)10.7) 得a  86 高三年级第一次模拟考试数学试题参考答案 第 5 页 (共 8 页)所以Q 型芯片I级品该项指标的第70百分位数为86······················································3分   2sin(C  ) 2 即 sin(C  ) 1··································································3分 6 6 (Ⅱ)当临界值c 65时,   7   Q 型芯片Ⅱ级品应用于A型手机的概率为0.01(7065) 0.05····································6分 C(0,) C  ( , ) C   6 6 6 6 2 (Ⅲ)设直接将Q 型芯片Ⅰ级品、Ⅱ级品应用于A型、B型手机时,该芯片生产商支出为 y(万元),  C  ················································································································5分 3 y  700[0.002100.005(c50)]300[0.01100.03(60c)] (注:没有角的范围表述扣1分.)  4095.5c c[50,60]·····················································································8分  (Ⅱ)方法一:AB  BC ,C  ABC 为等边三角形 3 所以当50 c  56时, y 101, AB  BC  AC  2 当c  56时, y 101, CE  PE  x,BE  2 x,BP  m,m(0,2) 当56 c  60时, y 101·············································································10分 在BPE 中,由余弦定理得 PE2  BP2  BE2 2BPBEcosB······································································· 7分 综上:为降低芯片生产商的成本,当临界值c[50,56)时,选择方案二; 当临界值c  56时,选择方案一和方案二均可; 1 即x2  m2 (2 x)2 2m(2 x) 2 当临界值c(56,60]时,选择方案一.······························································12分 (注:以上三种情况,少一种扣1分,没有文字表述扣2分) 整理可得x  m2 2m4 ,m(0,2)·········································································8分 4m 21.【解析】 12 12 x  4m 6 2 (4m) 6  4 3 6 4m 4m (Ⅰ)由正弦定理得 sinC(cosA 3sinA) sinB2sinA·································································1分 当且仅当m  42 3 时取等号 sinC(cosA 3sinA) sin(AC)2sinA 即BP  42 3时,CE取最小值4 3 6 sinC(cosA 3sinA) sinAcosC cosAsinC 2sinA 此时BE  84 3 ································································································10分 即 3sinAsinC  sinAcosC  2sinA 1  1 3 S  BPBEsin  (42 3)(84 3) 14 3 24.·················12分 PBE 2 3 2 2 A(0,) sinA 0  方法二:AB  BC ,C  ABC 为等边三角形 3 高三年级第一次模拟考试数学试题参考答案 第 6 页 (共 8 页)AB  BC  AC  2  当0 x  时, f(x) 0恒成立,即 f(x)单调递增, CE  PE  x,BE  2 x,x(0,2) 2 m  0 2 设EPB ,(0, ) 3  ex 当  x 时,m   恒成立 2 cosx 在BPE 中,由正弦定理得  PE BE ex 2ex sin(x ) sinEBP  sinEPB ··························································································7分 设g(x)  cosx , g(x)  ex(cosx sinx)   4 cos2 x cos2 x x 2 x 3  3  令g(x) 0,则  x ,令g(x) 0,则  x  即  sin 4 2 4 sin 3  3 3 g(x)在( , )上单调递减,在( ,)上单调递增 3 2 2 4 4 x  ,(0, ) 整理可得 3 3 ········································································8分 sin 2 g(x)  g( 3 ) 2e 3 4  ,m  3 min 4 2e 4  当且仅当 时,x取最小值4 3 6 3 2 又m  0,0 m  2e 4 3 当CE取最小值4 3 6时,BE  84 3 综上,m的取值范围 (0, 2e 4 ] ········································································5分 (注:(1)不写成区间形式也给分;(2)没写m  0扣1分)  1 在RtBPE 中,BEP  ,BP  BE  42 3 ·················································10分 6 2 方法二:函数 f(x)在(0,)上单调递增 S  1 BPBEsin   1 (42 3)(84 3) 3 14 3 24.·················12分  f(x) ex mcosx  0在(0,)上恒成立(且不恒为0) PBE 2 3 2 2 1 cosx 又m  0,  在(0,)上恒成立································································2分 m ex 22.【解析】 cosx (Ⅰ)解: f(x) ex mcosx················································································1分 设h(x) ex 方法一:函数 f(x)在(0,)上单调递增  2sin(x ) sinxcosx h(x)   4  f(x) ex mcosx  0在(0,)上恒成立(且不恒为0)········································2分 ex ex 注:此处没取到等号,扣1分 3  3 令h(x) 0,则  x ,令h(x) 0,则  x  4 2 4 高三年级第一次模拟考试数学试题参考答案 第 7 页 (共 8 页) 3 3  h(x)在( , )上单调递减,在( ,)上单调递增  f(x ) ex 0  sinx  cosx  sinx  2sin(x  ) 2 4 4 0 0 0 0 0 4 3 2 3   3  h(x)  h( )  又x ( , ),x  (, ), 2sin(x  )(1,0) min 4 3 0 4 2 0 4 4 0 4 2e 4 1 2 即1 f(x ) 0··································································································12分    0 m 3 2e 4 3 又m  0,0 m  . 2e 4 3 综上,m的取值范围 (0, 2e 4 ] ·················································································5分 (Ⅱ)证明:m 1, f(x) ex  sinx, f(x) ex cosx 当x  0时,ex 1,cosx  1, f(x) ex cosx  0  f(x)在(0,)上单调递增,即 f(x)在(0,)上无极值点·······································7分 当 x  0时,设u(x) f(x),u(x) ex sinx  0恒成立 u(x)在(,0)上单调递增 u(  2 ) e   2  0,u( 3 4  ) e  3 4   2 2  1 3  1 2  0 e 4 3  由零点存在性定理,存在唯一一个x ( , ),使得u(x ) 0,即ex 0  cosx 0 4 2 0 0 当 x  x 时,u(x) 0, f(x) 0, f(x)在(,x )上单调递减 0 0 当x  x  0时,u(x) 0, f(x) 0, f(x)在(x ,0)上单调递增 0 0  f(x)在(,)上存在唯一极小值点x ·······························································10分 0 3  (注:此处x 所在区间必须是( , )的子集,否则只给到10分位置) 0 4 2 高三年级第一次模拟考试数学试题参考答案 第 8 页 (共 8 页)