文档内容
吉林地区普通高中 2023—2024 学年度高三年级第一次模拟考试 如图2,当函数 y ax与 y log x有一个公共点(x ,y )在直线 y x上,且在该公共点处的
a 0 0
ax 0 x ①
切线为 y x,所以有 0 ,①代入②消ax 0得x lna lnax 0 1,ax 0 e,代入
ax 0 lna 1② 0
数学试题参考答案
1
一、单项选择题:本大题共8小题,每小题5分,共40分.
a ee
②中得 即 y ax与 y log x的公共点为(e,e)
x e a
1 2 3 4 5 6 7 8 0
A C B D A C B C
结合图象得到以下结论:
二、多项选择题:本大题共4小题,共20分.全部选对的得5分,部分选对的得2分,有选错的得0
1
(1)当a ee时,函数 y ax与 y log x的图象无公共点(如图1)
分. a
1
(2)当a ee时,函数 y ax与 y log x的图象有一个公共点(如图2)
9 10 11 12 a
1
BCD ACD BC ABD (3)当1 a ee时,函数 y ax与 y log x的图象有两个公共点(如图3)
a
(二)当0 a 1时函数图象呈现以下三种情况
三、填空题:本大题共4小题,每小题5分,共20分.其中第15题的第一个空填对得2分,第二
个空填对得3分.
2
13. 5 14. 5
15. 68; 108 16. (1e4,e4 1) (注:或写成1e4 m e4 1) 图4 图5 图6
7.教学建议:请教师们注意结合向量运算掌握三角形的“四心”问题. 如图5,当函数 y ax与 y log x有一个公共点(x ,y )在直线 y x上,且在该点处有公切
a 0 0
9.教学提示:建议教学中指导学生甄别a范围不同时,指、对函数的位置关系. 线(斜率为1),
(一)当a 1时函数图象呈现以下三种情况 ax 0 x ① 1
所以有 0 ,①代入②消ax 0得x lna lnax 0 1,ax 0 ,代入②中得
ax 0 lna 1② 0 e
a ee
1 1
1 ,即 y ax与 y log x的公共点为( ,)
x a e e
0 e
结合图象得到以下结论:
(4)当0 a ee时,函数 y ax与 y log x的图象有三个公共点(如图4)
a
图1 图2 图3
高三年级第一次模拟考试数学试题参考答案 第 1 页 (共 8 页)(5)当a ee时,函数 y ax与 y log x的图象有一个公共点(如图5) h(e2) 0 h(e2) 0
a
令h(t) t2 mt e4,则h(1) 0 或h(1) 0
(6)当ee a 1时,函数 y ax与 y log
a
x的图象有一个公共点(如图6) h(e2) 0 h(e2) 0
故0 m e4 1或1e4 m 0
15.教学建议:(1)关注《数学课程标准》中分层随机抽样的教学要求.
综上,实数m的取值范围是(1e4,e4 1).
(2)学生掌握推导过程.
方法二:
摘自《数学课程标准》:
②分层随机抽样 ()式化为m t
e4
,令h(t) t
e4
(t 0),
t t
通过实例,了解分层随机抽样的特点和适用范围,了解分层随机抽样的必要性,掌握各层样本量比例
易知 y h(t)在(,0),(0,)上单调递增,
分配的方法.结合具体实例,掌握分层随机抽样的样本均值和样本方差.
(x2)ex 且h(1)1e4,h(1) e4 1,h(e2) h(e2) 0
16.教学提示:当x 0且x 1时, f(x) , f(2) 0
(x1)2
其图象大致如图:
当0 x 2且x 1时, f(x) 0;当x 2时, f(x) 0. 当0 m e4 1或1e4 m 0时,满足
故 f(x)在(0,1),(1,2)上单调递减,在(2,)上单调递增, e2 t 1 t e2
1 或 1
t e2 1 t e2
2 2
当x 2时, f(x)取得极小值 f(2) e2,
综上,实数m的取值范围是(1e4,e4 1).
当x 1时, f(x) ;当x 1时, f(x) ;当x 时, f(x) .
由 f(x)解析式可知, f(x)为奇函数.画出 f(x)图象大致如下: 四 、解答题
17.【解析】
令g(x) 0得 f 2(x)mf (x)e4 0,设t f(x),
(Ⅰ) a // b 3sinxcosxcos2 x 0····························································1分
得关于t的方程t2 mt e4 0()
即 cosx( 3sinxcosx) 0
m2 4e4 0恒成立,设()式有两个不等实根t ,t ,
1 2
3
当t e2,t e2时,即m 0,满足题意, cosx 0或tanx ························································································3分
1 2 3
e2 t 1 t e2
当 1 或 1 ,满足题意, x(0,)
t e2 1 t e2
2 2
方法一:
高三年级第一次模拟考试数学试题参考答案 第 2 页 (共 8 页)
x 或x ···································································································5分 f(x)的单调递增区间是[ k, k](kZ)·················································10分
2 6 3 6
(注:少一个解扣1分,没有角的范围表述扣1分.) (注:单调区间没有写成区间形式扣1分,没有注明k 的范围扣1分.)
方法二: a // b 3sinxcosxcos2 x 0·························································1分
18.【解析】
3 1cos2x
sin2x 0
2 2 1
(Ⅰ)解: f(x) 2 (x 0)·············································································1分
x
1
sin(2x ) ··································································································3分
6 2 所求切线斜率为 f(1) 1,切点为(1,2)··································································3分
11 故所求切线方程为 y(2) (x1),即x y1 0·················································5分
x(0,) 2x ( , )
6 6 6
(注:将切线方程表示成 y x1也给分)
5
2x 或2x
(Ⅱ)方法一:分离变量
6 6 6 6
lnx
由 f(x) ax2 2x得a 在(0,)恒成立··························································· 6分
x 或x ···································································································5分 x2
6 2
(注:少一个解扣1分,没有角的范围表述扣1分.) lnx
令g(x) (x 0),则a g(x)
x2 max
1 1
(Ⅱ) f(x) ab 3sinxcosxcos2 x ················································6分 12lnx
2 2 g(x) ,g( e) 0·················································································8分
x3
3 1
sin2x cos2x 当0 x e 时,g(x) 0;当x e 时,g(x) 0
2 2
故g(x)在(0, e)上单调递增,在( e,)上单调递减
sin(2x )······················································································7分
6
1
故当x e 时,g(x)取最大值 ···········································································11分
2e
令 2k 2x 2k (kZ)
2 6 2
1 1
故a ,即a的取值范围是[ ,)······································································12分
2e 2e
k x k························································································9分
3 6
1
(注:表示成a 不扣分)
2e
高三年级第一次模拟考试数学试题参考答案 第 3 页 (共 8 页)方法二:分类讨论
1
g(x) 2ax,h(x)
x
由 f(x) ax2 2x得ax2 lnx 0在(0,)恒成立····················································6分
若a 0,当x 1时,ax2 0,lnx 0,g(x) h(x),不合题意;·······························7分
1 2ax2 1
令g(x) ax2 lnx(x 0),则g(x) 2ax
x x
若a 0,g(x) h(x)
①当a 0时,g(x) 0恒成立,g(x)在(0,)上单调递减,
曲线 y g(x)与曲线 y h(x)有且只有一个公共点,且在该公共点处的切线相同.
又g(1) a 0,故当x 1时,g(x) 0,不合题意;
(或直接由g(2) 4aln2 0,不合题意 设切点坐标为(x , y )
0 0
或当x 1时,ax2 0,lnx 0,g(x) 0,不合题意)···············································8分 y ax2 lnx x e
0 0 0 0
则 1 解得 1
2ax a
②当a 0时,令g(x) 0得x 1 , 0 x 0 2e
2a
1
故当a 时,g(x) h(x)
1 1 2e
令g(x) 0得x ,令g(x) 0得0 x ,
2a 2a
1
即a的取值范围是[ ,).····················································································· 12分
1 1 2e
故g(x)在(0, )上单调递减,g(x)在( ,)上单调递增
2a 2a
(教学建议:1.教师应强调第二问的法三比较适合选填题;
1 1 1 1
故当x 时,g(x)取最小值g( ) ln 0·········································11分 2.在教学中,教师应注意强调 f(x) ln(kx)(k 0)的导函数的相关内容;
2a 2a 2 2a
变式:若x[1,0],xln(12x)(a1)x恒成立,求a的取值范围.
1 1
故a ,即a的取值范围是[ ,)
2e 2e
19.【解析】
1
综上所述,a的取值范围是[ ,)··········································································12分
2e (Ⅰ)选择①
方法三:数形结合 由已知可得:
由 f(x) ax2 2x得ax2 lnx在(0,)恒成立·························································6分 当n1时,S a 2························································································1分
1 2
令g(x) ax2,h(x) lnx,则当x 0时,g(x) h(x)恒成立 当n 2且nN时,a S S a a
n n n1 n1 n
高三年级第一次模拟考试数学试题参考答案 第 4 页 (共 8 页)a 1
a 2a 即 n1 2····························································································3分 nN 0T 1······································································ 12分
n1 n a 2n1 1 n
n
(注:若(Ⅰ)选择①,且未讨论a 1的情况,扣2分;
a
又 2 1不符合上式 但若(Ⅱ)运算正确,(Ⅱ)问正常赋分.)
a
1
关于劣构问题:
···················································································· 5分
2, n1,
劣构问题的常见形式:
a
n 2n1,n 2且nN
(1)目标界定不明确的结构不良问题;
(2)具有多种解法、途径的结构不良问题;
选择②
(3)多个类似条件的结构不良问题;
S
n
a
n1 (4)问题条件或数据冗余的结构不良问题;
S S S ·····································································································1分 (5)不同求解目标的结构不良问题.
n n1 n
条件的选择原则:
S
S
n1
2S
n
即
S
n1 2··························································································3分
(1)应先分析所有条件,优先选择自己会做的、有把握的;
n
(2)在有把握的前提下,优先选择难度最小的;
又S a 2
1 1
(3)在选择条件时,要通盘考虑条件对整个问题的影响.
{S
n
}是以2为首项,2为公比的等比数列.
教学建议:
S 22n1 2n (nN)····················································································5分 (1)引导学生从知识的习得记忆转向问题的解决、策略的选择,使数学应用在思维层面真正发生;
n
(2)注重渗透不良结构问题,采用开放式、互动式的教学方式,引导学生关注数学问题情境的变化;
(Ⅱ)由(Ⅰ)可知S a 2n,a 2n1
n n1 n2
(3)注重变式训练,提高学生的辨析能力和应变能力.
S 2n 1 1
b n ···································9分
n (a 1)(a 1) (2n 1)(2n1 1) 2n 1 2n1 1
n1 n2 20.【解析】
T b b b b
n 1 2 3 n (Ⅰ)设Q 型芯片I级品该项指标的第70百分位数为a,
则该指标在80以下的概率为0.55,该指标在90以下的概率为0.8,因此该项指标的第70百分位数
1 1 1 1 1 1 1
(1 )( )( )( )
3 3 7 7 15 2n 1 2n1 1 为a一定在[80,90)内
1
1 ·································································································11分 0.002100.005100.023100.025100.025(a80) 0.7
2n1 1
(也可以用0.02100.025(90a)10.7)
得a 86
高三年级第一次模拟考试数学试题参考答案 第 5 页 (共 8 页)所以Q 型芯片I级品该项指标的第70百分位数为86······················································3分
2sin(C ) 2 即 sin(C ) 1··································································3分
6 6
(Ⅱ)当临界值c 65时,
7
Q 型芯片Ⅱ级品应用于A型手机的概率为0.01(7065) 0.05····································6分 C(0,) C ( , ) C
6 6 6 6 2
(Ⅲ)设直接将Q 型芯片Ⅰ级品、Ⅱ级品应用于A型、B型手机时,该芯片生产商支出为 y(万元),
C ················································································································5分
3
y 700[0.002100.005(c50)]300[0.01100.03(60c)]
(注:没有角的范围表述扣1分.)
4095.5c c[50,60]·····················································································8分
(Ⅱ)方法一:AB BC ,C ABC 为等边三角形
3
所以当50 c 56时, y 101,
AB BC AC 2
当c 56时, y 101,
CE PE x,BE 2 x,BP m,m(0,2)
当56 c 60时, y 101·············································································10分 在BPE 中,由余弦定理得
PE2 BP2 BE2 2BPBEcosB······································································· 7分
综上:为降低芯片生产商的成本,当临界值c[50,56)时,选择方案二;
当临界值c 56时,选择方案一和方案二均可; 1
即x2 m2 (2 x)2 2m(2 x)
2
当临界值c(56,60]时,选择方案一.······························································12分
(注:以上三种情况,少一种扣1分,没有文字表述扣2分)
整理可得x
m2 2m4
,m(0,2)·········································································8分
4m
21.【解析】 12 12
x 4m 6 2 (4m) 6 4 3 6
4m 4m
(Ⅰ)由正弦定理得
sinC(cosA 3sinA) sinB2sinA·································································1分 当且仅当m 42 3 时取等号
sinC(cosA 3sinA) sin(AC)2sinA 即BP 42 3时,CE取最小值4 3 6
sinC(cosA 3sinA) sinAcosC cosAsinC 2sinA 此时BE 84 3 ································································································10分
即 3sinAsinC sinAcosC 2sinA 1 1 3
S BPBEsin (42 3)(84 3) 14 3 24.·················12分
PBE
2 3 2 2
A(0,) sinA 0
方法二:AB BC ,C ABC 为等边三角形
3
高三年级第一次模拟考试数学试题参考答案 第 6 页 (共 8 页)AB BC AC 2
当0 x 时, f(x) 0恒成立,即 f(x)单调递增,
CE PE x,BE 2 x,x(0,2) 2
m 0
2
设EPB ,(0, )
3 ex
当 x 时,m 恒成立
2 cosx
在BPE 中,由正弦定理得
PE BE ex 2ex sin(x )
sinEBP sinEPB ··························································································7分 设g(x) cosx , g(x) ex(cosx sinx) 4
cos2 x cos2 x
x 2 x 3 3
令g(x) 0,则 x ,令g(x) 0,则 x
即 sin 4 2 4
sin
3
3 3
g(x)在( , )上单调递减,在( ,)上单调递增
3 2 2 4 4
x ,(0, )
整理可得 3 3 ········································································8分
sin
2 g(x) g( 3 ) 2e 3 4 ,m 3
min 4 2e 4
当且仅当 时,x取最小值4 3 6 3
2 又m 0,0 m
2e 4
3
当CE取最小值4 3 6时,BE 84 3 综上,m的取值范围 (0, 2e 4 ] ········································································5分
(注:(1)不写成区间形式也给分;(2)没写m 0扣1分)
1
在RtBPE 中,BEP ,BP BE 42 3 ·················································10分
6 2 方法二:函数 f(x)在(0,)上单调递增
S 1 BPBEsin 1 (42 3)(84 3) 3 14 3 24.·················12分 f(x) ex mcosx 0在(0,)上恒成立(且不恒为0)
PBE
2 3 2 2
1 cosx
又m 0, 在(0,)上恒成立································································2分
m ex
22.【解析】
cosx
(Ⅰ)解: f(x) ex mcosx················································································1分 设h(x)
ex
方法一:函数 f(x)在(0,)上单调递增
2sin(x )
sinxcosx
h(x) 4
f(x) ex mcosx 0在(0,)上恒成立(且不恒为0)········································2分 ex ex
注:此处没取到等号,扣1分 3 3
令h(x) 0,则 x ,令h(x) 0,则 x
4 2 4
高三年级第一次模拟考试数学试题参考答案 第 7 页 (共 8 页) 3 3
h(x)在( , )上单调递减,在( ,)上单调递增 f(x ) ex 0 sinx cosx sinx 2sin(x )
2 4 4 0 0 0 0 0 4
3 2 3 3
h(x) h( ) 又x ( , ),x (, ), 2sin(x )(1,0)
min 4 3 0 4 2 0 4 4 0 4
2e 4
1 2 即1 f(x ) 0··································································································12分
0
m 3
2e 4
3
又m 0,0 m .
2e 4
3
综上,m的取值范围 (0, 2e 4 ] ·················································································5分
(Ⅱ)证明:m 1, f(x) ex sinx, f(x) ex cosx
当x 0时,ex 1,cosx 1, f(x) ex cosx 0
f(x)在(0,)上单调递增,即 f(x)在(0,)上无极值点·······································7分
当 x 0时,设u(x) f(x),u(x) ex sinx 0恒成立
u(x)在(,0)上单调递增
u( 2 ) e 2 0,u( 3 4 ) e 3 4 2 2 1 3 1 2 0
e 4
3
由零点存在性定理,存在唯一一个x ( , ),使得u(x ) 0,即ex 0 cosx
0 4 2 0 0
当 x x 时,u(x) 0, f(x) 0, f(x)在(,x )上单调递减
0 0
当x x 0时,u(x) 0, f(x) 0, f(x)在(x ,0)上单调递增
0 0
f(x)在(,)上存在唯一极小值点x ·······························································10分
0
3
(注:此处x 所在区间必须是( , )的子集,否则只给到10分位置)
0 4 2
高三年级第一次模拟考试数学试题参考答案 第 8 页 (共 8 页)